X-ray synchrotron phase contrast imaging for structural analysis of soft tissues and biomaterials

2019 ◽  
Author(s):  
B. Singh ◽  
A. K. Agrawal ◽  
Y. S. Kashyap ◽  
M. Shukla ◽  
B. N. Pandey ◽  
...  
2013 ◽  
Vol 718-720 ◽  
pp. 2099-2102
Author(s):  
Qiang Tao ◽  
Shu Qian Luo

The hard X-ray in-line phase contrast imaging (HXILPCI) is a phase contrast technique that generates excellent contrast of biological soft tissues compared to conventional X-ray absorption radiography. We explore the application of HXILPCI in the diagnosis of gastric cancer and pancreatic cancer. These nude mice cancer samples were checked by HXILPCI to obtain projection contrast images of 9μm image resolution with CCD camera. The texture extraction was based on gray level co-occurrence matrix (GLCM). The corresponding morphological features of abnormal and normal tissues are analyzed. The produced phase contrast images of nude mice cancer samples show clearly biological tissues architectures and the size of cancer. The paper results show that HXILPCI can be a potential noninvasive technique to diagnose early cancer.


2011 ◽  
Vol 5 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Lu Zhang ◽  
Shuqian Luo

The current imaging methods have a limited ability to visualize microstructures of biological soft tissues. Small lesions cannot be detected at the early stage of the disease. Phase contrast imaging (PCI) is a novel non-invasive imaging technique that can provide high contrast images of soft tissues by the use of X-ray phase shift. It is a new choice in terms of non-invasively revealing soft tissue details. In this study, the lung and hepatic fibrosis models of mice and rats were used to investigate the ability of PCI in microstructures observation of soft tissues. Our results demonstrated that different liver fibrosis stages could be distinguished non-invasively by PCI. The three-dimensional morphology of a segment of blood vessel was constructed. Noteworthy, the blood clot inside the vessel was visualized in three dimensions which provided a precise description of vessel stenosis. Furthermore, the whole lung airways including the alveoli were obtained. We had specifically highlighted its use in the visualization and assessment of the alveoli. To our knowledge, this was the first time for non-invasive alveoli imaging using PCI. This finding may offer a new perspective on the diagnosis of respiratory disease. All the results confirmed that PCI will be a valuable tool in biological soft tissues imaging.


2020 ◽  
Vol 64 (2) ◽  
pp. 20503-1-20503-5
Author(s):  
Faiz Wali ◽  
Shenghao Wang ◽  
Ji Li ◽  
Jianheng Huang ◽  
Yaohu Lei ◽  
...  

Abstract Grating-based x-ray phase-contrast imaging has the potential to enhance image quality and provide inner structure details non-destructively. In this work, using grating-based x-ray phase-contrast imaging system and employing integrating-bucket method, the quantitative expressions of signal-to-noise ratios due to photon statistics and mechanical error are analyzed in detail. Photon statistical noise and mechanical error are the main sources affecting the image noise in x-ray grating interferometry. Integrating-bucket method is a new phase extraction method translated to x-ray grating interferometry; hence, its image quality analysis would be of great importance to get high-quality phase image. The authors’ conclusions provide an alternate method to get high-quality refraction signal using grating interferometer, and hence increases applicability of grating interferometry in preclinical and clinical usage.


Author(s):  
Jianheng Huang ◽  
Yaohu Lei ◽  
Xin Liu ◽  
Jinchuan Guo ◽  
Ji Li ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


Sign in / Sign up

Export Citation Format

Share Document