scholarly journals Design and CFD modeling of a solar micro gas turbine for rural zones in Sahel

2019 ◽  
Author(s):  
Ababacar Thiam ◽  
Elhadji Ibrahima Cissé ◽  
Baye Alioune Ndiogou ◽  
Kory Faye ◽  
Mactar Faye
Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The aim of this study is to investigate the effects of syngas substitution on combustion characteristics for a micro gas turbine. For syngas combustion, the ratio of hydrogen and carbon monoxide is varied depending on the process techniques and it could be critical for gas turbine combustion applications. The combustion characteristics of syngas are quite different from natural gas, for example, the flame speed of hydrogen is higher than that of natural gas, but the flame speed of carbon monoxide is lower. In order to understand the performance differences between syngas fuel and natural gas, the combustion and emission characteristics of a can type combustor were investigated with model simulations using the commercial code STAR-CD, where a three-dimensional compressible k-ε model for turbulent flows and presumed probability density function for chemical process between methane/syngas/air mixtures were constructed. For the fuel injection velocity of 60 m/s and using hydrogen-rich (H2/CO = 80/20) syngas, the high temperature regions are separated and close to the sides of the combustor with some syngas fuel substituted for methane, but the high temperature zones move back to the core region of the combustor by substituting more syngas fuel. The CO2 and NOx emissions are decreased with 10% methane substituted by syngas, but increased with decreasing methane percentages. The detailed flame structures, distributions of flame temperature and flow velocity, and gas emissions of the combustor were presented and compared by using syngas composition and methane percentage of blended fuel mixture as the parameters. The exit temperature profiles and pattern factor were also discussed. Before syngas fuels are used as an alternative fuel for the micro gas turbine, further experimental testing are needed as the CFD modeling results provide a guidance for the improved designs of the combustor.


Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by the commercial CFD software STAR-CD, where the three-dimension compressible k-ε model for turbulent flow and PPDF (Presumed Probability Density Function) model for combustion process were constructed. As the syngas are substituted for methane, the total heat input from the blended fuels and the fuel flow rates are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 80%) for two typical syngas compositions and the conditions where syngas applied at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content for the same syngas percentage. The CO2 emissions also decreased at 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing are needed as the CFD modeling results provide a guidance for the improved designs of the combustor.


2020 ◽  
Vol 10 (6) ◽  
pp. 6422-6426
Author(s):  
A. C. Mangra

The interest in micro gas turbines has been steadily increasing. As a result, attention has been focused on obtaining optimal configurations for micro gas turbines depending on the applications in which they are used. This paper presents the CFD modeling results regarding an annular type combustion chamber, part of an 800N micro gas turbine, predestined to equip a small scale multifunctional airplane. Two configurations have been taken into consideration and 3D RANS numerical simulations have been conducted with the use of the commercial software ANSYS CFX. The liquid fuel droplets were modeled by the particle transport model, which tracks the particles in a Lagrangian way. An initial fuel droplet diameter of 500µm has been imposed. The numerical results obtained are encouraging. The flame was developed in the central area of the fire tube, its walls thus not being subjected to high temperatures. Also, the maximum temperatures were obtained in the primary zone of the fire tube. The temperature then decreased in the fire tube's secondary zone and dilution zone. The numerical results will be validated by conducting combustion tests on a testing rig which will be developed inside the institute's Combustion Chamber Laboratory.


2020 ◽  
Author(s):  
Francesco Rovense ◽  
Miguel Ángel Reyes-Belmonte ◽  
Manuel Romero ◽  
José González-Aguilar

2008 ◽  
Vol 3 (1) ◽  
pp. 204-215
Author(s):  
Kousaku YOTORIYAMA ◽  
Shunsuke AMANO ◽  
Hidetomo FUJIWARA ◽  
Tomohiko FURUHATA ◽  
Masataka ARAI

2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Shijie Guo

This paper demonstrates the investigations on the blade vibration of a radial inflow micro gas turbine wheel. Firstly, the dependence of Young's modulus on temperature was measured since it is a major concern in structure analysis. It is demonstrated that Young's modulus depends on temperature greatly and the dependence should be considered in vibration analysis, but the temperature gradient from the leading edge to the trailing edge of a blade can be ignored by applying the mean temperature. Secondly, turbine blades suffer many excitations during operation, such as pressure fluctuations (unsteady aerodynamic forces), torque fluctuations, and so forth. Meanwhile, they have many kinds of vibration modes, typical ones being blade-hub (disk) coupled modes and blade-shaft (torsional, longitudinal) coupled modes. Model experiments and FEM analysis were conducted to study the coupled vibrations and to identify the modes which are more likely to be excited. The results show that torque fluctuations and uniform pressure fluctuations are more likely to excite resonance of blade-shaft (torsional, longitudinal) coupled modes. Impact excitations and propagating pressure fluctuations are more likely to excite blade-hub (disk) coupled modes.


2017 ◽  
Vol 142 ◽  
pp. 297-302 ◽  
Author(s):  
Marco Buffi ◽  
Alessandro Cappelletti ◽  
Tine Seljak ◽  
Tomaž Katrašnik ◽  
Agustin Valera-Medina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document