Discretized data pattern for mango ripeness classification using swarm-based discretization algorithm

2019 ◽  
Author(s):  
Nurnisa Helmee ◽  
Yasmin Mohd Yacob ◽  
Zulkifli Husin ◽  
Mohd Farid Mavi ◽  
Tan Wei Keong
2004 ◽  
Vol 16 (2) ◽  
pp. 145-153 ◽  
Author(s):  
L.A. Kurgan ◽  
K.J. Cios

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Adrian M. Deaconu ◽  
Daniel T. Cotfas ◽  
Petru A. Cotfas

Some parameters must be calculated with very good accuracy for the purpose of designing, simulating, and evaluating the performance of a photovoltaic system. The seven parameters of the photovoltaic cell and panels for the two-diode model are determined using a parallelized metaheuristic algorithm based on successive discretization. The parameters obtained for a photovoltaic cell and four panels using the proposed algorithm are compared with the ones calculated through over twenty methods from recent research literature. The root mean square error is used to prove the superiority of the Parallelized Successive Discretization Algorithm (PSDA). The smallest values for root mean square error (RMSE) in both cases, photovoltaic cell and panels, are obtained for the algorithm presented in this paper. The seven parameters for three panels known in the specialised literature, Kyocera KC200GT, Leibold Solar Module LSM 20, and Leybold Solar Module STE 4/100 are determined for the first time using PSDA.


2020 ◽  
Vol 10 (10) ◽  
pp. 3646 ◽  
Author(s):  
Yonggang Mei ◽  
Rong Mo ◽  
Huibin Sun ◽  
Bingbing He ◽  
Kun Bu

Cutting chatter is extremely harmful to the machining process, and it is of great significance to eliminate chatter through analyzing the stability of the machining process. In this work, the stability of the milling process with multiple delays is investigated. Considering the regeneration effect, the dynamics of the milling process with variable pitch cutter is modeled as periodic coefficients delayed differential equations (DDEs) with multiple delays. An adaptive variable-step numerical integration method (AVSNIM) considering the effect of the helix angle is developed firstly, which can discretize the cutting period accurately, thereby improving the calculation accuracy of the stability limit of the milling process. The accuracy and efficiency of the AVSNIM are verified through a benchmark milling model. Subsequently, a novel spindle speed-dependent discretization algorithm is proposed, which is combined with the AVSNIM to further reduce the calculation time of the stability lobes diagram (SLD). The simulation experiment results demonstrate that the proposed algorithm can effectively reduce the calculation time.


2017 ◽  
Vol 62 (1) ◽  
pp. 16 ◽  
Author(s):  
Younes Menni ◽  
Ahmed Azzi

A computational fluid dynamic analysis of thermal and aerodynamic fields for an incompressible steady-state flow of a Newtonian fluid through a two-dimensional horizontal rectangular section channel with upper and lower wall-attached, vertical, staggered, transverse, cascaded rectangular-triangular (CRT), solid-type baffles is carried out in the present paper using the Commercial, Computational Fluid Dynamics, software FLUENT. The flow model is governed by the Reynolds averaged Navier-Stokes (RANS) equations with the SST k-ω turbulence model and the energy equation. The finite volume method (FVM) with the SIMPLE-discretization algorithm is applied for the solution of the problem. The computations are carried out in the turbulent regime for different Reynolds numbers. In this study, thermo-aeraulic fields, dimensionless axial profiles of velocity, skin friction coefficients, local and average heat transfer coefficients, and thermal enhancement factor were investigated, at constant surface temperature condition along the heated upper wall of the channel, for all the geometry under investigation and chosen for various stations. The impact of the cascaded rectangular-triangular geometry of the baffle on the thermal and dynamic behavior of air is shown and this in comparing the data of this obstacle type with those of the simple flat rectangular-shaped baffle. This CFD analysis can be a real application in the field of heat exchangers, solar air collectors, and electronic equipments.


Sign in / Sign up

Export Citation Format

Share Document