cutting chatter
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 2074 (1) ◽  
pp. 012071
Author(s):  
Liyao Li

Abstract Cutting chatter is a strong relative vibration between cutting tool and work piece in machining process, which will reduce cutting quality and cutting efficiency, and shorten the service life of cutting tool and machine tool. As long as cutting is carried out in production, vibration will occur, and chatter is a strong self-excited vibration between machining work piece and cutting tool. Flutter problem will occur in almost all cutting processes, which will cause a series of problems such as the reduction of dimensional accuracy of machined work pieces, tool damage and so on. In the dynamic design and dynamic analysis of machine tool structure, in order to evaluate and improve the ability of machine tool to resist chatter, and to select the cutting conditions without chatter, it is necessary to judge the cutting stability of machine tool. How to improve the advanced technology of manufacturing industry is an important topic for manufacturing researchers, and the research on the detection of cutting chatter stability has important practical significance for promoting the development of cutting manufacturing industry to high-end technology.


2020 ◽  
Vol 19 (4) ◽  
pp. 667-677
Author(s):  
H. N. Gao ◽  
D. H. Shen ◽  
L. Yu ◽  
W. C. Zhang

The traditional analytical method has difficulty in accurately modelling cutting chatter. This paper constructs the vibration datasets of different chatter states and establishes a machine learning (ML) model for chatter identification, treating physical vibration signal as the input. Specifically, the cutting vibration signal was converted into the time-frequency spectrum, which was then classified by a self-designed deep residual convolutional neural network (DR-CNN). After that, the cutting vibration signal was broken down into chatter bands through variational mode decomposition (VMD). The information entropies of the chatter bands were calculated as cutting chatter features. Next, support vector machine (SVM) was introduced to classify the extracted features and used to create an online cutting chatter identification algorithm. The proposed method achieved a much higher mean identification accuracy (92.57 %) than the traditional identification method.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Yuhuan Zhang ◽  
Yongsheng Ren ◽  
Jinfeng Zhang

Using the cutter bar made with composite rather than metal in high rotating speed milling or boring operations is a new attempt for suppressing chatter of the cutting system. This is because composite material has much higher specific stiffness and damping as well as dynamic stiffness compared to metal. But, for a rotating composite cutter bar, larger internal damping (or rotational damping) occurs, and such damping may cause the rotor instability in the perspective of rotor dynamics. On the other hand, the effect of internal damping of a rotating composite cutter bar on the chatter stability in high speed cutting process is also an important issue worthy of concern. In this paper, a new dynamic model of the cutting system with a rotating composite cutter bar is presented. The cutter bar is modelled as a rotating, cantilever, tapered, composite Euler–Bernoulli shaft, subjected to a regenerative cutting force. Modal damping loss factors are described based on the viscoelastic constitutive relation of composite combined with an energy approach. The governing equations of the system are obtained by employing Hamilton principle. Galerkin method is used to discretize the partial differential equations of motion. The frequency-domain solution of stability proposed by Altintas and Budak [14] is extended and used to predict the chatter stability of the cutting system. The results reveal the inherent relationship between internal damping instability and cutting chatter. The effects of the geometry parameters of the cutter bar, ply angle, stacking sequences, and internal and external damping are examined.


2020 ◽  
Vol 10 (10) ◽  
pp. 3646 ◽  
Author(s):  
Yonggang Mei ◽  
Rong Mo ◽  
Huibin Sun ◽  
Bingbing He ◽  
Kun Bu

Cutting chatter is extremely harmful to the machining process, and it is of great significance to eliminate chatter through analyzing the stability of the machining process. In this work, the stability of the milling process with multiple delays is investigated. Considering the regeneration effect, the dynamics of the milling process with variable pitch cutter is modeled as periodic coefficients delayed differential equations (DDEs) with multiple delays. An adaptive variable-step numerical integration method (AVSNIM) considering the effect of the helix angle is developed firstly, which can discretize the cutting period accurately, thereby improving the calculation accuracy of the stability limit of the milling process. The accuracy and efficiency of the AVSNIM are verified through a benchmark milling model. Subsequently, a novel spindle speed-dependent discretization algorithm is proposed, which is combined with the AVSNIM to further reduce the calculation time of the stability lobes diagram (SLD). The simulation experiment results demonstrate that the proposed algorithm can effectively reduce the calculation time.


2018 ◽  
Vol 35 (4) ◽  
pp. 4071-4081
Author(s):  
Hu Xiao ◽  
Jipeng Zhao ◽  
Xiaoqiang Shi ◽  
R.A. Gilbert

2017 ◽  
Vol 24 (12) ◽  
pp. 2642-2655 ◽  
Author(s):  
Lida Zhu ◽  
Baoguang Liu ◽  
Hongyu Chen

Cutting stability is the prerequisite to ensure efficient and high-precision machining, resulting in poor surface quality and damaged tool, which is the basis for the optimization of process parameters and improvement of processing efficiency. Aiming at process damping caused by interference between a tool flank face and a machined surface of part, the dynamic model and critical condition of stability is proposed in the paper. The frequency method is applied to solve the stability of the cutting chatter, and the correctness of the model is validated by experiments. Moreover, through orthogonal experiments, regression analysis methodology are adopted to establish a prediction model of surface roughness and finally combined with the study findings on milling stability based on process damping and surface roughness, achieved optimization of the milling parameters by genetic optimization algorithm. This conclusion provides a theoretical foundation and reference for the milling mechanism research.


2016 ◽  
Vol 693 ◽  
pp. 146-149
Author(s):  
Dao Lin Wang

To improve the driller design using the variable drilling speed technology, by attaching to the cam gear mechanism on the driller spindle, adding a mandatory axial vibration to the driller. The vibration of the drilling speed at a certain waveform and within the scope of a certain amplitude of periodic change, in order to achieve the purpose of reducing the radial drill cutting chatter, ensuring processing quality of hole. Based on variable ​​cutting speed technology and the use of vibration damping mechanism, a variable speed apparatus and a cam gear are attached to achieve a vibration damping, to improve hole drilling parts dimension, shape and position of the precision of the accuracy.


Sign in / Sign up

Export Citation Format

Share Document