Averaged angle-resolved electroreflectance spectroscopy on Cu(In,Ga)Se2 solar cells: Determination of buffer bandgap energy and identification of secondary phase

2019 ◽  
Vol 115 (26) ◽  
pp. 263901
Author(s):  
Jasmin Seeger ◽  
Jonas Grutke ◽  
Nico Weber ◽  
Stefan Schützhoff ◽  
Xiaowei Jin ◽  
...  
Solar RRL ◽  
2021 ◽  
Author(s):  
Anh Dinh Bui ◽  
Md Arafat Mahmud ◽  
Naeimeh Mozaffari ◽  
Rabin Basnet ◽  
The Duong ◽  
...  

Author(s):  
Carey Reich ◽  
Arthur Onno ◽  
Alexandra Bothwell ◽  
Anna Kindvall ◽  
Zachary Holman ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. 489-502 ◽  
Author(s):  
M. Raftani ◽  
T. Abram ◽  
W. Loued ◽  
R. Kacimi ◽  
A. Azaid ◽  
...  

In the present paper, four π-conjugated materials, based on terphenyl and pyrrole, with A–D–A structure have been theoretically studied to propose new organic compounds to be used in the organic solar cell field. Moreover, the geometrical and optoelectronic properties of the designed molecules M1, M2, M3 and M4 have been computed after optimization in their fundamental states, using the quantum chemical method DFT / B3LYP/ 6−311G (d, p). Different parameters including HOMO and LUMO energy levels, bandgap energy, frontier molecular orbital (FMO), chemical reactivity indices, the density of states (DOS), Voc, electrostatic potential (ESP), and thermodynamic parameters at several temperatures in the range of 0-500 K have been determined. The absorption properties including the transition energy, the wavelengths (λmax), the excitation vertical energy, and the corresponding oscillator strengths of these molecules have been studied using the quantum chemical method TD−DFT / CAM–B3LYP / 6–311G (d, p). The obtained results of our studied compounds show that M3 (with 2H, 2'H-1, 1'-biisoindole moiety) as a donor group has special optoelectronic, absorption, and good photovoltaic characteristics. Thus, they can be utilized as an electron-donating in organic solar cells BHJ type.


2015 ◽  
Author(s):  
John F. Geisz ◽  
Iván García ◽  
William E. McMahon ◽  
Myles A. Steiner ◽  
Mario Ochoa ◽  
...  

2005 ◽  
Vol 109 (32) ◽  
pp. 15429-15435 ◽  
Author(s):  
M. Bailes ◽  
P. J. Cameron ◽  
K. Lobato ◽  
L. M. Peter

2012 ◽  
Vol 1432 ◽  
Author(s):  
Jonathan D. Major ◽  
Leon Bowen ◽  
Robert E. Treharne ◽  
Ken Durose

ABSTRACTTwo issues relating to the determination of junction position in thin film CdTe solar cells have been investigated. Firstly, the use of a focussed ion beam (FIB) milling as a method of sample preparation for electron beam induced current (EBIC) analysis is demonstrated. It is superior to fracturing methods. High quality secondary electron and combined secondary electron/EBIC images are presented and interpreted for solar cells with CdTe layers deposited by both close space sublimation (CSS) or RF sputtering. Secondly, it was shown that in an RF-sputtered CdTe device, while the photovoltaic junction was buried ~1.1 μm from the metallurgical interface, the shape of the external quantum efficiency (EQE) curve did not indicate the presence of a buried homo-junction. SCAPS modelling was used to verify that EQE curve shapes are not sensitive to junctions buried < 1.5μm from the CdTe/CdS interface.


Sign in / Sign up

Export Citation Format

Share Document