scholarly journals Total phenolic, UPLC-QTOF-MS analysis and antidepressant-like effect in the mice forced swim test of Jamu Neuropathic Pain Reducer

2019 ◽  
Author(s):  
Aisyah Hanifah ◽  
Dewi Tristantini
2011 ◽  
Vol 115 (4) ◽  
pp. 812-821 ◽  
Author(s):  
Jing Wang ◽  
Yossef Goffer ◽  
Duo Xu ◽  
David S. Tukey ◽  
D. B. Shamir ◽  
...  

Background Chronic pain is associated with depression. In rodents, pain is often assessed by sensory hypersensitivity, which does not sufficiently measure affective responses. Low-dose ketamine has been used to treat both pain and depression, but it is not clear whether ketamine can relieve depression associated with chronic pain and whether this antidepressant effect depends on its antinociceptive properties. Methods The authors examined whether the spared nerve injury model of neuropathic pain induces depressive behavior in rats, using sucrose preference test and forced swim test, and tested whether a subanesthetic dose of ketamine treats spared nerve injury-induced depression. Results Spared nerve injury-treated rats, compared with control rats, showed decreased sucrose preference (0.719 ± 0.068 (mean ± SEM) vs. 0.946 ± 0.010) and enhanced immobility in the forced swim test (107.3 ± 14.6s vs. 56.2 ± 12.5s). Further, sham-operated rats demonstrated depressive behaviors in the acute postoperative period (0.790 ± 0.062 on postoperative day 2). A single subanesthetic dose of ketamine (10 mg/kg) did not alter spared nerve injury-induced hypersensitivity; however, it treated spared nerve injury-associated depression-like behaviors (0.896 ± 0.020 for ketamine vs. 0.663 ± 0.080 for control rats 1 day after administration; 0.858 ± 0.017 for ketamine vs. 0.683 ± 0.077 for control rats 5 days after administration). Conclusions Chronic neuropathic pain leads to depression-like behaviors. The postoperative period also confers vulnerability to depression, possibly due to acute pain. Sucrose preference test and forced swim test may be used to compliment sensory tests for assessment of pain in animal studies. Low-dose ketamine can treat depression-like behaviors induced by chronic neuropathic pain.


Author(s):  
Roni Yankelevitch-Yahav ◽  
Motty Franko ◽  
Avrham Huly ◽  
Ravid Doron

2021 ◽  
Vol 165 ◽  
pp. 56-57
Author(s):  
Shota Naoe ◽  
Takahiro Kataoka ◽  
Hina Shuto ◽  
Junki Yano ◽  
Tetsuya Nakada ◽  
...  

2019 ◽  
Vol 236 (11) ◽  
pp. 3353-3362 ◽  
Author(s):  
Mohammad Nasehi ◽  
Mohammad-Hossein Mohammadi-Mahdiabadi-Hasani ◽  
Mohaddeseh Ebrahimi-Ghiri ◽  
Mohammad-Reza Zarrindast

2021 ◽  
pp. 1-7
Author(s):  
Dylan J. Terstege ◽  
Debra S. MacDonald ◽  
R. Andrew Tasker

Abstract Objective: Ginsenosides, biologically active components of the root of Panax ginseng, have been reported to have therapeutic benefits in a number of disease states including psychiatric conditions such as major depressive disorder. Our objective was to determine if a standardised commercial ginseng extract, G115®, could reduce the signs of behavioural despair commonly observed in animal models of depression either alone or in combination with the selective serotonin reuptake inhibitor (SSRI) fluoxetine. Methods: Male Sprague-Dawley (SD) rats (N = 51) were divided into four groups: vehicle control, G115® ginseng root extract, fluoxetine and fluoxetine plus G115®. Rats were trained to voluntarily consume treatments twice daily for 14 days and were then tested in an open field (OF), elevated plus maze (EPM) and forced swim test (FST). Post-mortem hippocampal and prefrontal cortex tissue was analysed for expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) by western blot. Results: One-way Analysis of Variance revealed no significant group differences in the OF or plus-maze performance on any variable examined. In the FST, fluoxetine significantly reduced immobility time and increased latency to immobility. The effects of fluoxetine were further significantly potentiated by co-administration of G115®. Post-mortem tissue analysis revealed significant group differences in BDNF expression in the left hippocampus and left prefrontal cortex without any accompanying changes in TrkB expression. Conclusions: We conclude that oral G115® significantly potentiates the antidepressant-like effect of fluoxetine in the FST in the absence of potentially confounding effects on locomotion and anxiety.


2021 ◽  
pp. 026988112199688
Author(s):  
Eduardo R Butelman ◽  
Caroline Baynard ◽  
Bryan D McElroy ◽  
Thomas E Prisinzano ◽  
Mary Jeanne Kreek

Background: Novel short-acting κ(kappa)-opioid receptor selective antagonists are translational tools to examine the impact of the κ-receptor/dynorphin system in assays related to central nervous system dysfunction (e.g., substance use disorders, anhedonia and depression). The effects of such compounds have been compared in males and females under very limited conditions. Aims: The goal of this study was to examine potential sex differences in the effects of a κ-agonist and a short-acting κ-antagonist in an ethologically relevant test of anhedonia, the “splash test” of self-grooming, and also in the forced swim test and in locomotor activity. Methods: We examined the dose-dependence of grooming deficits caused by the κ-agonist U50,488 (0.1–3.2 mg/kg intraperitoneal (i.p.)) in gonadally intact adult male and female C57BL/6J mice. We then compared the effects of the short-acting κ-antagonist LY2795050 ((3-chloro-4-(4-(((2S)-2-pyridin-3-ylpyrrolidin-1-yl)methyl) phenoxy)benzamide)); 0.032–0.1 mg/kg i.p.) in blocking grooming deficits caused by U50,488 (3.2 mg/kg). The effects of LY2795050 were also studied in the forced swim test (FST). The effects of LY2795050 in blocking the locomotor depressant effects of U50,488 (10 mg/kg) were also studied. Results: U50,488 produced dose-dependent grooming deficits in male and female mice, and LY2795050 prevented these effects. In contrast, LY2795050 decreased immobility in the FST in males at a dose of 0.1 mg/kg, but not in females, up to a dose of 0.32 mg/kg. Also, LY2795050 (0.32 mg/kg) prevented and also reversed the locomotor-depressant effects of U50,488 (10 mg/kg), in males and females. Conclusions: This study further implicates the κ-receptor system in ethologically relevant aspects of anhedonia, and confirms sexual dimorphism in some behavioral effects of novel κ-antagonists.


Author(s):  
Ana Paula Ramos Costa ◽  
Cintia Vieira ◽  
Lauren O.L. Bohner ◽  
Cristiane Felisbino Silva ◽  
Evelyn Cristina da Silva Santos ◽  
...  

Neuroscience ◽  
2004 ◽  
Vol 126 (4) ◽  
pp. 849-857 ◽  
Author(s):  
G Drossopoulou ◽  
K Antoniou ◽  
E Kitraki ◽  
G Papathanasiou ◽  
E Papalexi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document