Lattice and atomic structure imaging of semiconductors by high resolution transmission electron microscopy

1985 ◽  
Vol 47 (7) ◽  
pp. 685-688 ◽  
Author(s):  
A. Ourmazd ◽  
K. Ahlborn ◽  
K. Ibeh ◽  
T. Honda
2012 ◽  
Vol 18 (S2) ◽  
pp. 1896-1897
Author(s):  
M.A. Schofield ◽  
S. Sen ◽  
Y. Zou ◽  
S.K. Ray ◽  
P. Guptasarma ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


1985 ◽  
Vol 57 ◽  
Author(s):  
W. Krakow ◽  
D. A. Smith

AbstractThe atomic structure of representative tilt boundaries in gold has been determined by high resolution transmission electron microscopy. Characteristic and varying regions of decreased density and coordination have been identified and related to mechanisms of grain boundary diffusion and migration


1998 ◽  
Vol 510 ◽  
Author(s):  
Dov Cohent ◽  
D.L. Medlin ◽  
C. Barry Carter

AbstractThe structure of planar defects in GaP films grown by MBE on Si (110) was investigated by transmission electron microscopy. Growth of GaP films on the (110) surface produced numerous microtwins which formed both first and second order twin boundaries. Using high-resolution transmission electron microscopy, the atomic structure of Σ=3 and Σ=9 twin boundaries were studied. Both the Σ=3 and Σ=9 interfaces were observed to facet along specific crystallographic planes. Geometric models of the Σ=9 {221} twin boundary accounting for different polar bonding configurations were proposed and compared with experimental observations.


1998 ◽  
Vol 4 (S2) ◽  
pp. 676-677
Author(s):  
S. Oktyabrsky ◽  
R. Kalyanaraman ◽  
K. Jagannadham ◽  
J. Narayan

Grain boundaries (GBs) in laser deposited YB2Cu3O7-δ/MgO(001) thin films have been investigated by high-resolution transmission electron microscopy (TEM) and scanning TEM (STEM). We report both statistics and atomic structure of low-angle and high-angle [001] tilt grain boundaries resulting from almost perfect c-axis textured YBCO films.Atomic structure of low-angle GBs was analyzed using a dislocation model. These boundaries have been found to be aligned primarily along (100) and (110) interface planes. For (100) boundary plane, the GB consists of a periodic array of [100] dislocations (Fig.l). For (110) boundary plane, the array is also periodic but every [110] dislocation is split by ∼ 1.5 nm into two [100] and [010] dislocations (Fig.2). We have calculated energy of various configurations and shown that the energy of the (110) boundary with dissociated dislocations is comparable to that of (100) boundary, which explains the coexistence of (100) and (110) interface facets along the boundary.


1992 ◽  
Vol 295 ◽  
Author(s):  
V. Ravikumar ◽  
Vinayak P. Dravid

AbstractThe atomic structure of a pristine (undoped) boundary in strontium titanate has been investigated using transmission electron microscopy techniques. Results of electron diffraction studies indicate a pure tilt boundary with a common \001] tilt axis, and a tilt angle of 36.8°, which corresponds to a Σ-= 5 grain boundary in the Coincidence Site Lattice (CSL) notation. High Resolution Transmission Electron Microscopy (HRTEM) indicates a symmetric tilt grain boundary with a (130) type grain boundary plane. No cation non-stoichiometry or impurity segregants could be detected at the interface, within the limits of the Energy Dispersive X-ray microanalysis technique used. The grain boundary has a compact core, with negligible planenormal rigid body translation (RBT). An in-plane RBT of (1/2)d130 (˜ 0.62 A°) was identified from the high resolution electron micrographs. An empirical model of the relaxed atomic structure of the grain boundary is proposed.


Sign in / Sign up

Export Citation Format

Share Document