Dynamic in situ X-ray diffraction reveals unexpected intermediate crystal structures

Scilight ◽  
2020 ◽  
Vol 2020 (26) ◽  
pp. 261104
Author(s):  
Chris Patrick
2004 ◽  
Vol 59 (6) ◽  
pp. 635-638 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Udo Losehand

The compounds (H3C)2S, (H3Si)2S and (H3Ge)2S have been crystallised in situ on a diffractometer and their crystal structures determined by low-temperature X-ray diffraction. The molecules are present as monomers in the crystals. The aggregation of the molecules through secondary intermolecular contacts in the crystal is different: (H3C)2S is weakly associated into dimers by S···S contacts, whereas (H3Si)2S and (H3Ge)2S form Si···S and Ge···S contacts in an ice-analogous aggregation motif. Important geometry parameters are (H3C)2S: C-S 1.794(av) Å , C-S-C 99.2(1)°; (H3Si)2S: Si- S 2.143(1) Å , Si-S-Si 98.4°; (H3Ge)2S Ge-S 2.223(2) and 2.230(2) Å , Ge-S-Ge 98.2(1)◦.


2012 ◽  
Vol 51 (22) ◽  
pp. 12540-12547 ◽  
Author(s):  
Mark Feyand ◽  
Annika Hübner ◽  
André Rothkirch ◽  
David S. Wragg ◽  
Norbert Stock

2003 ◽  
Vol 58 (8) ◽  
pp. 759-763 ◽  
Author(s):  
Norbert W. Mitzel

The compound Cl3SiCH2OCH3 was prepared by reacting ClCH2OCH3 with the Cl3SiH/NEt3 reagent. H3SiCH2OCH3 and F3SiCH2OCH3 were synthesized from Cl3SiCH2OCH3 by reduction with LiAlH4 and by fluorination with SbF3, respectively. The crystal structures of the low-melting compounds H3SiCH2OCH3 and F3SiCH2OCH3 were determined by X-ray diffraction of in situ grown crystals. Both compounds do not show any observable β -donor-acceptor interactions, but behave structurally like usual dialkylethers or silanes, as is obvious from the structural parameters in H3SiCH2OCH3 (<SiCO 108.4(3)-109.4(3)°, <COC 111.0(4)-111.6(4)°) and in F3SiCH2OCH3 (<SiCO 107.1(1), <COC 111.2(2)°). Earlier postulates of Si· · ·O interactions in compounds with SiCO units could thus not be confirmed on a structural basis.


2003 ◽  
Vol 58 (7) ◽  
pp. 708-710 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Krunoslav Vojinović

Single crystals of chlorodimethyl(dimethylamino)silane, Me2NSiMe2Cl, and dimethyl-bis-(dimethylamino)silane, (Me2N)2SiMe2, have been grown in situ from the melt at low temperatures and their structures determined by X-ray diffraction. Important structural parameters (Å / °): Me2NSiMe2Cl (C2/m) Si-N 1.686(2), Si-C 1.851(1), Si- Cl 2.109(1), N-Si-Cl 111.7(1), C-Si-Cl 105.1(1), C-N-C 112.8(2), Si-N-C 123.4(1); (Me2N)2SiMe2 (P21/c) Si-N(1) 1.725(1), Si-C(1) 1.868(1), N(1)-Si-N(2) 105.7(1), C(3)- N(1)-C(4) 111.6(1), Si-N(1)-C(3) 122.4(1), Si-N(1)-C(4) 120.0(1).


2003 ◽  
Vol 81 (1-2) ◽  
pp. 479-484 ◽  
Author(s):  
S Takeya ◽  
Y Kamata ◽  
T Uchida ◽  
J Nagao ◽  
T Ebinuma ◽  
...  

X-ray diffraction measurements were conducted to determine the hydrate structures formed from a mixture of CH4 and C2H6 gases at 263 K. With increasing initial fractions of C2H6 in the gas, the crystal structures of the hydrate were structure I, structure I + structure II, structure II, structure I + structure II, and structure I. In situ observations of the growth processes of the mixed gas hydrates under constant gas concentration suggest that the coexistence of structure I and structure II hydrate were caused by occurrences of metastable hydrate structure. PACS No.: 82.75Fq


2013 ◽  
Vol 19 (37) ◽  
pp. 12537-12546 ◽  
Author(s):  
Mark Feyand ◽  
Milan Köppen ◽  
Gernot Friedrichs ◽  
Norbert Stock

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
A. Zangvil ◽  
L.J. Gauckler ◽  
G. Schneider ◽  
M. Rühle

The use of high temperature special ceramics which are usually complex materials based on oxides, nitrides, carbides and borides of silicon and aluminum, is critically dependent on their thermomechanical and other physical properties. The investigations of the phase diagrams, crystal structures and microstructural features are essential for better understanding of the macro-properties. Phase diagrams and crystal structures have been studied mainly by X-ray diffraction (XRD). Transmission electron microscopy (TEM) has contributed to this field to a very limited extent; it has been used more extensively in the study of microstructure, phase transformations and lattice defects. Often only TEM can give solutions to numerous problems in the above fields, since the various phases exist in extremely fine grains and subgrain structures; single crystals of appreciable size are often not available. Examples with some of our experimental results from two multicomponent systems are presented here. The standard ion thinning technique was used for the preparation of thin foil samples, which were then investigated with JEOL 200A and Siemens ELMISKOP 102 (for the lattice resolution work) electron microscopes.


2017 ◽  
Vol 72 (6) ◽  
pp. 355-364
Author(s):  
A. Kopp ◽  
T. Bernthaler ◽  
D. Schmid ◽  
G. Ketzer-Raichle ◽  
G. Schneider

Sign in / Sign up

Export Citation Format

Share Document