scholarly journals Dynamic analysis of rotating flexible disk subjected to double slider loading systems

2012 ◽  
Vol 2 (6) ◽  
pp. 063004
Author(s):  
Yongchen Pei ◽  
Xin Yang
2012 ◽  
Vol 331 (16) ◽  
pp. 3762-3773 ◽  
Author(s):  
Yong-Chen Pei ◽  
Qing-Chang Tan ◽  
Xin Yang ◽  
Chris Chatwin

1988 ◽  
Vol 110 (4) ◽  
pp. 674-677 ◽  
Author(s):  
M. Carpino ◽  
G. A. Domoto

A rotating flexible disk separated from a rigid flat surface by a gas film is addressed. The gas film between the disk and the plate is represented by an incompressible Reynolds equation. Inertial effects are included. The disk is treated as a membrane where the tension is found from the plane stress solution for a spinning disk. Two different methods for the axisymmetric solution of this system are developed. The first uses the method of matched asymptotic expansions. The second method is a mixed numerical/perturbation procedure.


Author(s):  
George T. Flowers ◽  
Fang Sheng Wu

This study examines the influence of bearing clearance on the dynamical behavior of a rotating, flexible disk/shaft system. Most previous work in nonlinear rotordynamics has tended to concentrate separately on shaft vibration or on bladed disk vibration, neglecting the coupling dynamics between them. The current work examines the important rotordynamical behavior of coupled disk/shaft dynamics. A simplified nonlinear model is developed for lateral vibration of a rotor system with a bearing clearance nonlinearity. The steady-state dynamical behavior of this system is explored using numerical simulation and limit cycle analysis. It is demonstrated that bearing clearance effects can produce superharmonic vibration that may serve to excite high amplitude disk vibration. Such vibration could lead to significantly increased bearing loads and catastrophic failure of blades and disks. In addition, multi-valued responses and aperiodic behavior was observed.


2010 ◽  
Vol 329 (26) ◽  
pp. 5520-5531 ◽  
Author(s):  
Yong-Chen Pei ◽  
Qing-Chang Tan ◽  
Fu-Sheng Zheng ◽  
Yong-Qi Zhang

2010 ◽  
Vol 329 (17) ◽  
pp. 3550-3564 ◽  
Author(s):  
Yong-Chen Pei ◽  
Ling He ◽  
Ji-Xin Wang

2021 ◽  
Author(s):  
Sanjib Chowdhury ◽  
Yashodhan V. Joshi

Abstract Eigenvalues of a simple rotating flexible disk-shaft system are obtained using different methods. The shaft is supported radially by non-rigid bearings, while the disk is situated at one end of the shaft. Eigenvalues from a finite element and a multi-body dynamic tool are compared against an established analytical formulation. The Campbell diagram based on natural frequencies obtained from the tools differ from the analytical values because of oversimplification in the analytical model. Later, detailed whirl analysis is performed using AVL Excite multi-body tool that includes understanding forward and reverse whirls in absolute and relative coordinate systems and their relationships. Responses to periodic force and base excitations at a constant rotational speed of the shaft are obtained and a modified Campbell diagram based on this is developed. Whirl of the center of the disk is plotted as an orbital or phase plot and its rotational direction noted. Finally, based on the above plots, forward and reverse whirl zones for the two excitation types are established.


Sign in / Sign up

Export Citation Format

Share Document