temperature increment
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sachin Vijaya Kumar ◽  
N. Suresh

PurposeThe Reinforced Concrete(RC) elements are known to perform well during exposure to elevated temperatures. Hence, RC elements are widely used to resist the extreme heat developing from accidental fires and other industrial processes. In both of the scenarios, the RC element is exposed to elevated temperatures. However, the primary differences between the fire and processed temperatures are the rate of temperature increase, mode of exposure and exposure durations. In order to determine the effect of two heating modalities, RC beams were exposed to processed temperatures with slow heating rates and fire with fast heating rates.Design/methodology/approachIn the present study, RC beam specimens were exposed to 200 °C, to 800 °C temperature at 200 °C intervals for 2 h' duration by adopting two heating modes; Fire and processed temperatures. An electrical furnace with low-temperature increment and a fire furnace with standard time-temperature increment is adapted to expose the RC elements to elevated temperatures.FindingsIt is observed from test results that, the reduction in load-carrying capacity, first crack load, and thermal crack widths of RC beams exposed to 200 °C, and 600 °C temperature at fire is significantly high from the RC beams exposed to the processed temperature having the same maximum temperature. As the exposure temperature increases to 800 °C, the performance of RC beams at all heating modes becomes approximately equal.Originality/valueIn this work, residual performance, and failure modes of RC beams exposed to elevated temperatures were achieved through two different heating modes are presented.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Yiqun Liu ◽  
Yitian Li ◽  
Y. Gene Liao ◽  
Ming-Chia Lai

The nail penetration test has been widely adopted as a battery safety test for reproducing internal short-circuits. In this paper, the effects of cell initial State-of-Charge (SOC) and penetration location on variations in cell temperature and terminal voltage during penetration tests are investigated. Three different initial SOCs (10%, 50%, and 90%) and three different penetration locations (one is at the center of the cell, the other two are close to the edge of the cell) are used in the tests. Once the steel cone starts to penetrate the cell, the cell terminal voltage starts to drop due to the internal short-circuit. The penetration tests with higher initial cell SOCs have larger cell surface temperature increases during the tests. Also, the penetration location always has the highest temperature increment during all penetration tests, which means the heat source is always at the penetration location. The absolute temperature increment at the penetration location is always higher when the penetration is close to the edge of the cell, compared to when the penetration is at the center of the cell. The heat generated at the edges of the cell is more difficult to dissipate. Additionally, a battery cell internal short-circuit model with different penetration locations is built in ANSYS Fluent, based on the specifications and experimental data of the tested battery cells. The model is validated with an acceptable discrepancy range by using the experimental data. Simulated data shows that the temperature gradually reduces from penetration locations to their surroundings. The gradients of the temperature distributions are much larger closer to the penetration locations. Overall, this paper provides detailed information on the temperature and terminal voltage variations of a lithium-ion polymer battery cell with large capacity and high power under penetration tests. The presented information can be used for assessing the safety of the onboard battery pack of electric vehicles.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7194
Author(s):  
Dongdong Li ◽  
He Zhu ◽  
Xiaojing Gong

This paper presents an analytical solution for the thermomechanical buckling of functionally graded material (FGM) sandwich plates. The solution is obtained using a four-variable equivalent-single-layer (ESL) plate theory. Two types of sandwich plates are included: one with FGM facesheets and homogeneous core, and vice versa for the other. The governing equations are derived based on the principle of minimum total potential energy. For simply supported boundary conditions, these equations are solved via the Navier method. The results on critical buckling load and temperature increment of simply supported FGM sandwich plates are compared with the available solutions in the literature. Several results are presented considering various material and geometrical parameters as well as their effect on the thermomechanical buckling response of FGM sandwich plates. The relationship between the mechanical load and the temperature increment for uniform/linear temperature rise of FGM sandwich plates under combined mechanical and thermal loads is studied.


Author(s):  
Heng Yu

AbstractFire is one of the most common disasters that threaten the safety of the crowd in metro stations. Due to the variations in the design of metro stations, the hazard posed by the spreading products of the fire can pose different risks. The typical structures of metro stations in Guangzhou and Washington, D.C., are very different from each other. In Washington, D.C., the “high-dome” structure is predominant in the construction of metro stations, while in Guangzhou, most metro stations have the “flat ceiling” structure. In this article, a numerical modeling for fire dynamic simulation is used to predict and compare the spreading characters of fire products (the smoke height change, the temperature distribution and the visibility change) when fires with 2.5 MW heat release rate occur in the platform center and at the platform end in the two kinds of metro stations. The results show that, in the same fire scenario, the lowest smoke heights monitored in the Guangzhou model is 0.6 m (fire at the platform end) and 0.8 m (fire in the platform center) above the safe smoke height in 360 s after a fire breaks out, while it is 6.15 m (fire in the platform center) and 6.2 m (fire at the platform end) above the smoke height in the Washington model. The temperature increment in the Guangzhou model is 23 °C (fire in the platform center) to 29 °C (fire at the platform end) in 360 s after the fire breaks out, while the temperature increment in the same period in the Washington model is 8.5 °C (fire at the platform end) to 9 °C (fire in the platform center). The visibility of most areas on the platform of the Guangzhou model is about 1 m no matter the fire is in the platform center or at the platform end at 360 s after the fire begins, while in the Washington model, the visibility of most areas is 1.5–13.5 mm (fire at the platform end) to 4–14 m (fire in the platform center) at the same moment. Based on the results, the environment is worse when the fire happens at the end of the platform than that when the fire happens in the platform center of the Guangzhou model. While the fire location has fewer impacts on the smoke height, temperature, and visibility in the Washington model, metro stations with a high-dome structure can be beneficial to fire evacuation safety; however, the construction cost can be high. Metro stations with flat ceiling are widely used in more cities for it has lower construction cost; to compensate for its weaker abilities under fire conditions, it is suggested that smoke exhaust systems should be carefully and fully considered.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2094
Author(s):  
Xavier Roselló-Mechó ◽  
Martina Delgado-Pinar ◽  
Yuri O. Barmenkov ◽  
Alexander V. Kir’yanov ◽  
Miguel V. Andrés

Optical fiber characterization using whispering gallery mode resonances of the fiber itself has been demonstrated to be a powerful technique. In this work, we exploit the thermal sensitivity of whispering gallery mode resonances to characterize the pump-induced temperature increment in holmium doped and holmium-ytterbium codoped optical fibers. The technique relies on the measurement of the resonances’ wavelength shift due to temperature variation as a function of the pump power. Holmium doped fibers were pumped to the second excited level 5I6 of the Ho3+ ion using a laser diode at 1125 nm and ytterbium-holmium codoped fibers to the 2F5/2 level of the Yb3+ ion by a laser diode at 975 nm. Our results demonstrate that pumping ytterbium-holmium codoped fibers at 975 nm results in dramatic thermal effects, producing a temperature increment two orders higher than that observed in holmium doped fibers pumped with a 1125 nm laser diode.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Hyeok Lee ◽  
Bosung Kim ◽  
Yongsub Kim ◽  
Sang-Koog Kim

AbstractThe magneto-thermal effect, which represents the conversion of magnetostatic energy to heat from magnetic materials, has been spotlighted for potential therapeutic usage in hyperthermia treatments. However, the realization of its potential has been challenged owing to the limited heating from the magnetic nanoparticles. Here, we explored a new-concept of magneto-thermal modality marked by low-power-driven, fast resonant spin-excitation followed by consequent energy dissipation, which concept has yet to be realized for current hyperthermia applications. We investigated the effect of spin resonance-mediated heat dissipation using superparamagnetic Fe3O4 nanoparticles and achieved an extraordinary initial temperature increment rate of more than 150 K/s, which is a significant increase in comparison to that for the conventional magnetic heat induction of nanoparticles. This work would offer highly efficient heat generation and precision wireless controllability for realization of magnetic-hyperthermia-based medical treatment.


2021 ◽  
Vol 264 ◽  
pp. 05001
Author(s):  
Vladimir Rybakov ◽  
Anatoly Seliverstov ◽  
Kseniia Usanova ◽  
Iroda Rayimova

There is an experimental study of samples of monolithic foam concrete “SOVBI” with a density of 205 kg /m3 (grade D200) for combustibility. The evaluation criteria are the following values of combustion characteristics: temperature increment in the furnace, duration of the stable flame burning, sample mass loss. The experimental results show the following values for foam concrete: temperature increment in the furnace of 2 °C, duration of the stable flame burning of 0 s, and sample mass of 24.4%. Thus, monolithic foam concrete with a density of 205 kg/m3 is noncombustible material. It is proposed to use monolithic foam concrete and other lightweight monolithic cellular foam concrete, as a structural fire protection for lightweight steel concrete structures. It, in turn, can increase the fire resistance of external walls and floor structure with the steel frame of cold-formed zinc-coated profiles.


2020 ◽  
Vol 61 ◽  
pp. 136-150 ◽  
Author(s):  
Najat A. Alghamdi

This paper deals with a mathematical model of thermoelastic rectangular nano-beam, which is thermally loaded by thermal shock and subjected to moving heat source with constant speed. The nano-beam has been clamped-clamped and its length along the x-axis. The governing equations have been written by using the Euler–Bernoulli equation of nano-beams and the non-Fourier heat conduction with one-relaxation time. Laplace transform has been applied with respect to the time variable, and the solutions have been derived in its domain. The numerical solutions for the Silicon material have been done by using Tzou method. The results have been shown in figures for the temperature increment and the lateral deflection with various values of heat source speed to stand on its effects. Moreover, the effects of the ratio between the length and the width of the beam have been discussed. The speed of the heat source and the dimensions of the beam have significant effects on the temperature increment and the lateral deflection of the beam.


MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3379-3388
Author(s):  
Claudia J. Bahena-Martínez ◽  
Nayely Torres-Gómez ◽  
Alfredo R. Vilchis-Néstor

AbstractThe control over the materials structure is crucial for the modulation of its properties, in order to achieve this control is important to know the formation mechanism of the material as function of parameters used. For this purpose, the effect of temperature (120, 140, 160 and 180 °C) on the hydrothermal synthesis of zinc sulphide is evaluated and a proposal of the sequence of reactions formation of zinc sulphur is presented. ZnS nanostructures with blend-phase were obtained, the temperature increment induces the growth of the nanostructure ranged between .62 and 12.72 nm, furthermore, increase the crystallinity of the ZnS nanostructures. The proposed reactions suggest the formation of a complex of thioacetamide with the Zn+2 and its subsequent decomposition into ZnS.


Sign in / Sign up

Export Citation Format

Share Document