scholarly journals Numerical investigation of heat transfer and pressure loss of flow through a heated plate mounted by perforated concave rectangular winglet vortex generators in a channel

2020 ◽  
Author(s):  
Syaiful ◽  
Nakula Kusuma ◽  
Muchammad ◽  
Retno Wulandari ◽  
Nazarudin Sinaga ◽  
...  
Author(s):  
Chaoyi Wan ◽  
Yu Rao ◽  
Xiang Zhang

A numerical investigation of the heat transfer characteristics within an array of impingement jets on a flat and square pin-fin roughened plate with spent air in one direction has been conducted. Four types of optimized pin-fin configurations and the flat plate have been investigated in the Reynolds number range of 15000–35000. All the computation results have been validated well with the data of published literature. The effects of variation of jet Reynolds number and different configurations on the distribution of the average and local Nusselt number and the related pressure loss have been obtained. The highest total heat transfer rate increased up to 162% with barely any extra pressure loss compared with that of the flat plate. Pressure distributions and streamlines have also been captured to explain the heat transfer characteristic.


Author(s):  
Curtis K. Stimpson ◽  
Jacob C. Snyder ◽  
Karen A. Thole ◽  
Dominic Mongillo

Additive manufacturing (AM) with metal powder has made possible the fabrication of gas turbine components with small and complex flow paths that cannot be achieved with any other manufacturing technology presently available. The increased design space of AM allows turbine designers to develop advanced cooling schemes in high temperature components to increase cooling efficiency. Inherent in AM with metals is the large surface roughness that cannot be removed from small internal geometries. Such roughness has been shown in previous studies to significantly augment pressure loss and heat transfer of small channels. However, the roughness on these channels or other surfaces made from AM with metal powder has not been thoroughly characterized for scaling pressure loss and heat transfer data. This study examines the roughness of the surfaces of channels of various hydraulic length scales made with direct metal laser sintering (DMLS). Statistical roughness parameters are presented along with other parameters that others have found to correlate with flow and heat transfer. The pressure loss and heat transfer previously reported for the DMLS channels studied in this work are compared to the physical roughness measurements. Results show that the relative arithmetic mean roughness correlates well with the relative equivalent sand grain roughness. A correlation is presented to predict the Nusselt number of flow through AM channels which gives better predictions of heat transfer than correlations currently available.


2021 ◽  
Author(s):  
Syaiful ◽  
M. Kurnia Lutfi

The high thermal resistance of the airside of the compact heat exchanger results in a low heat transfer rate. Vortex generator (VG) is one of the effective passive methods to increase convection heat transfer by generating longitudinal vortex (LV), which results in an increase in fluid mixing. Therefore, this study aims to analyze the convection heat transfer characteristics and the pressure drop of airflow in a rectangular channel in the presence of a concave rectangular winglet VG on a heated plate. Numerical calculations were performed on rectangular winglet pairs vortex generators (RWP VGs) and concave rectangular winglet pairs vortex generators (CRWP VGs) with a 45° angle of attack and one, two, and three pairs of VGs with and without holes. The simulation results show that the decrease in the value of convection heat transfer coefficient and pressure drop on CRWP with three perforated VG configuration is 4.63% and 3.28%, respectively, of the three pairs of CRWP VG without holes at an airflow velocity of 2 m/s.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Curtis K. Stimpson ◽  
Jacob C. Snyder ◽  
Karen A. Thole ◽  
Dominic Mongillo

Additive manufacturing (AM) with metal powder has made possible the fabrication of gas turbine components with small and complex flow paths that cannot be achieved with any other manufacturing technology presently available. The increased design space of AM allows turbine designers to develop advanced cooling schemes in high-temperature components to increase cooling efficiency. Inherent in AM with metals is the large surface roughness that cannot be removed from small internal geometries. Such roughness has been shown in previous studies to significantly augment pressure loss and heat transfer of small channels. However, the roughness on these channels or other surfaces made from AM with metal powder has not been thoroughly characterized for scaling pressure loss and heat transfer data. This study examines the roughness of the surfaces of channels of various hydraulic length scales made with direct metal laser sintering (DMLS). Statistical roughness parameters are presented along with other parameters that others have found to correlate with flow and heat transfer. The pressure loss and heat transfer previously reported for the DMLS channels studied in this work are compared to the physical roughness measurements. Results show that the relative arithmetic mean roughness correlates well with the relative equivalent sand grain roughness. A correlation is presented to predict the Nusselt number of flow through AM channels, which gives better predictions of heat transfer than correlations currently available.


Sign in / Sign up

Export Citation Format

Share Document