Using GEOS-5 forecast products to represent aerosol optical depth in operational day-ahead solar irradiance forecasts for the southwest United States

2020 ◽  
Vol 12 (5) ◽  
pp. 053702
Author(s):  
Patrick T. W. Bunn ◽  
William F. Holmgren ◽  
Michael Leuthold ◽  
Christopher L. Castro
2021 ◽  
Vol 13 (12) ◽  
pp. 2316
Author(s):  
Iyasu G. Eibedingil ◽  
Thomas E. Gill ◽  
R. Scott Van Pelt ◽  
Daniel Q. Tong

Recent observations reveal that dust storms are increasing in the western USA, posing imminent risks to public health, safety, and the economy. Much of the observational evidence has been obtained from ground-based platforms and the visual interpretation of satellite imagery from limited regions. Comprehensive satellite-based observations of long-term aerosol records are still lacking. In an effort to develop such a satellite aerosol dataset, we compared and evaluated the Aerosol Optical Depth (AOD) from Deep Blue (DB) and Dark Target (DT) product collection 6.1 with the Aerosol Robotic Network (AERONET) program in the western USA. We examined the seasonal and monthly average number of Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua DB AOD retrievals per 0.1∘×0.1∘ from January 2003 to December 2017 across the region’s different topographic, climatic, and land cover conditions. The number of retrievals in the southwest United States was on average greater than 37 days per 90 days for all seasons except summer. Springtime saw the highest number of AOD retrievals across the southwest, consistent with the peak season for synoptic-scale dust events. The majority of Arizona, New Mexico, and western Texas showed the lowest number of retrievals during the monsoon season. The majority of collocating domains of AOD from the Aqua sensor showed a better correlation with AERONET AOD than AOD from Terra, and the correlation coefficients exhibited large regional variability across the study area. The correlation coefficient between the couplings Aqua DB AOD-AERONET AOD and Terra DB AOD-AERONET AOD ranges from 0.1 to 0.94 and 0.001 to 0.94, respectively. In the majority of the sites that exhibited less than a 0.6 correlation coefficient and few matched data points at the nearest single pixel, the correlations gradually improved when the spatial domain increased to a 50 km × 50 km box averaging domain. In general, the majority of the stations revealed significant correlation between MODIS and AERONET AOD at all spatiotemporal aggregating domains, although MODIS generally overestimated AOD compared to AERONET. However, the correlation coefficient in the southwest United States was the lowest and in stations from a higher latitude was the highest. The difference in the brightness of the land surface and the latitudinal differences in the aerosol inputs from the forest fires and solar zenith angles are some of the factors that manifested the latitudinal correlation differences.


Author(s):  
Nels Laulainen ◽  
Nels Larson ◽  
Qilong Min ◽  
Joseph J. Michalsky ◽  
Jim Schlemmer ◽  
...  

2008 ◽  
Vol 8 (1) ◽  
pp. 161-179
Author(s):  
J. Lenoble ◽  
C. Brogniez ◽  
A. de La Casinière ◽  
T. Cabot ◽  
V. Buchard ◽  
...  

Abstract. Routine measurements of global and diffuse UV irradiances at Briançon station (1310 m a.s.l.) are used to retrieve the direct solar irradiance and the aerosol optical depth (AOD), for cloudless days. Data of three years (2003, 2004, 2005) are analyzed; the results confirm those of a preliminary analysis for 2001, 2002. The atmosphere is very clear in winter, with AODs between 0.05 and 0.1. The turbidity increases slowly in spring, starting end of February, with AODs around 0.2–0.3 in mid summer, some values reaching 0.4. A similar behaviour is observed for all years, with somewhat higher values in late summer for the year 2003.


2014 ◽  
Vol 53 (8) ◽  
pp. 1876-1885 ◽  
Author(s):  
Gouri Prabhakar ◽  
Eric A. Betterton ◽  
W. Conant ◽  
Benjamin M. Herman

AbstractMultiwavelength solar irradiance measurements between 400 and 900 nm were made on cloudless days in Tucson, Arizona, over a 30-month period between March 2010 and August 2012. They were analyzed to simultaneously retrieve aerosol optical depth (AOD) and ozone column abundance and to examine their monthly variation. These retrievals were compared with results from a similar study done at the same location between 1975 and 1977. The near tripling of population in Tucson over the past 35 years may have contributed to a 19% increase in the AOD, and the annual-mean ozone column abundance was found to be 11% lower than that inferred during the mid-1970s.


2013 ◽  
Vol 118 (19) ◽  
pp. 11,228-11,241 ◽  
Author(s):  
Shenshen Li ◽  
Michael J. Garay ◽  
Liangfu Chen ◽  
Erika Rees ◽  
Yang Liu

2016 ◽  
Vol 16 (8) ◽  
pp. 5009-5019 ◽  
Author(s):  
Charles A. Brock ◽  
Nicholas L. Wagner ◽  
Bruce E. Anderson ◽  
Andreas Beyersdorf ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US). Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0–4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry–climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of  ∼  25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1–0.5 µm diameter dominates aerosol extinction.


2021 ◽  
Vol 234 ◽  
pp. 00054
Author(s):  
Abdelmoula Ben-tayeb ◽  
Mohammed Diouri ◽  
Abdelouahid Tahiri ◽  
Rajae Meziane

Atmospheric aerosol is an important factor that affects solar irradiance. In this study, we examined the total atmospheric optical depth, aerosol optical depth AOD and the vertical particle size distribution in East Asia in terms of aerosol type during three years. The temporal variation of the aerosol optical depth for each site showed a constant mode renewed each year, the large AOD0,5 are recorded in spring and summer in an almost periodic manner, with maximums around 0.95 in Seoul, 0.08 in Chiang Mai and 1.34 in EPA-NCU. The particle size distributions under a bimodal lognormal form present a remarkable increase in volume concentration of fine and coarse modes during spring. The aerosols reduce solar irradiance by 37.33 ± 0.78% in Chiang Mai, 33.48 ± 6.43% in EPA-NCU and 38.59 ± 3.86% in Seoul.


Sign in / Sign up

Export Citation Format

Share Document