Numerical study of a sonic jet in a supersonic crossflow over a flat plate

2020 ◽  
Vol 32 (12) ◽  
pp. 126113
Author(s):  
Imran Rasheed ◽  
Debi Prasad Mishra
Keyword(s):  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Prasad R ◽  
Thanigaiarasu S ◽  
Sembaruthi M ◽  
Rathakrishnan E

AbstractThe present numerical study is to understand the effect of air tabs located at the exit of a convergent nozzle on the spreading and mixing characteristics of correctly expanded sonic primary jet. Air tabs used in this study are two secondary jets issuing from constant diameter tubes located diametrically opposite at the periphery of the primary nozzle exit, normal to the primary jet. Two air tabs of Mach numbers 1.0 to 1.4, in steps of 0.1 are considered in this study. The mixing modification caused by air tabs are analysed by considering the mixing of uncontrolled (free) primary jet as a reference. Substantial enhancement in jet mixing is achieved with Mach 1.4 air tabs, which results in 80 % potential core length reduction. The total pressure profiles taken on the plane (YZ) normal to the primary jet axis, at various locations along the primary jet centreline revealed the modification of the jet cross sectional shape by air tabs. The stream-wise vortices and bifurcation of the primary jet caused by air tabs are found to be the mechanism behind the enhanced jet mixing.


2009 ◽  
Vol 77 (2) ◽  
Author(s):  
R. Ahmad ◽  
K. Naeem ◽  
Waqar Ahmed Khan

This paper presents the classical approximation scheme to investigate the velocity profile associated with the Falkner–Skan boundary-layer problem. Solution of the boundary-layer equation is obtained for a model problem in which the flow field contains a substantial region of strongly reversed flow. The problem investigates the flow of a viscous liquid past a semi-infinite flat plate against an adverse pressure gradient. Optimized results for the dimensionless velocity profiles of reverse wedge flow are presented graphically for different values of wedge angle parameter β taken from 0≤β≤2.5. Weighted residual method (WRM) is used for determining the solution of nonlinear boundary-layer problem. Finally, for β=0 the results of WRM are compared with the results of homotopy perturbation method.


Author(s):  
Andrei Valerievich Novikov ◽  
Alexander Vitalievich Fedorov ◽  
Ivan Vladimirovich Egorov ◽  
Anton Olegovich Obraz ◽  
Nikolay Nikolaevich Semenov

Sign in / Sign up

Export Citation Format

Share Document