Study of Correctly Expanded Sonic Jet with Air Tabs

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Prasad R ◽  
Thanigaiarasu S ◽  
Sembaruthi M ◽  
Rathakrishnan E

AbstractThe present numerical study is to understand the effect of air tabs located at the exit of a convergent nozzle on the spreading and mixing characteristics of correctly expanded sonic primary jet. Air tabs used in this study are two secondary jets issuing from constant diameter tubes located diametrically opposite at the periphery of the primary nozzle exit, normal to the primary jet. Two air tabs of Mach numbers 1.0 to 1.4, in steps of 0.1 are considered in this study. The mixing modification caused by air tabs are analysed by considering the mixing of uncontrolled (free) primary jet as a reference. Substantial enhancement in jet mixing is achieved with Mach 1.4 air tabs, which results in 80 % potential core length reduction. The total pressure profiles taken on the plane (YZ) normal to the primary jet axis, at various locations along the primary jet centreline revealed the modification of the jet cross sectional shape by air tabs. The stream-wise vortices and bifurcation of the primary jet caused by air tabs are found to be the mechanism behind the enhanced jet mixing.

Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 59 ◽  
Author(s):  
Xin Li ◽  
Maolin Zhou ◽  
Jianmin Zhang ◽  
Weilin Xu

The present study examines the configuration of an offset jet issuing into a narrow and deep pool. The standard k-ε model with volume-of-fluid (VOF) method was used to simulate the offset jet for three exit offset ratios (OR = 1, 2 and 3), three expansion ratios (ER = 3, 4 and 4.8), and different jet exits (circular and rectangular). The results clearly show significant effects of the circumference of jet exits (Lexit) in the early region of flow development, and a fitted formula is presented to estimate the length of the potential core zone (LPC). Analysis of the flow field for OR = 1 showed that the decay of cross-sectional streamwise maximum mean velocity (Um) in the transition zone could be fitted by power law with the decay rate n decreased from 1.768 to 1.197 as the ER increased, while the decay of Um for OR = 2 or 3 was observed accurately estimated by linear fit. Analysis of the flow field of circular offset jet showed that Um for OR = 2 decayed fastest due to the fact that the main flow could be spread evenly in floor-normal direction. For circular jets, the offset ratio and expansion ratio do not affect the spread of streamwise velocity in the early region of flow development. It was also observed that the absence of sudden expansion of offset jet is analogous to that of a plane offset jet, and the flow pattern is different.


2004 ◽  
Vol 126 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Ravinder B. Siripuram ◽  
Lyndon S. Stephens

This paper presents a numerical study of the effects of different shapes of deterministic microasperities in sliding surface lubrication when hydrodynamic films are found. Positive (protruding) and negative (recessed) asperities of constant height (depth) are considered with circular, square, diamond, hexagonal and triangular cross-sections. Of particular interest is the impact of asperity/cavity cross-sectional geometry on friction and leakage, which has importance in sealing applications. The results indicate that the friction coefficient is insensitive to asperity/cavity shape, but quite sensitive to the size of the cross-section. By contrast, leakage rates are found to be quite sensitive to both cross-sectional shape and size, with triangular asperities giving the smallest leakage rate and square asperities giving a largest leakage rate. The minimum coefficient of friction for all shapes is found to occur at an asperity area fraction of 0.2 for positive asperities and 0.7 for negative asperities. Finally, the results indicate the existence of a critical asperity area fraction where the performance curves for positive and negative asperities cross over. These cross-over points are identified for friction coefficient and leakage rate.


2019 ◽  
Vol 3 (2) ◽  
pp. 1-9 ◽  
Author(s):  
Mohammad Mohammad Beigi Kasvaei ◽  
◽  
Mohammad Hossein Kazeminezhad ◽  
Abbas Yeganeh-Bakhtiary ◽  
◽  
...  

Author(s):  
Sathish Kumar K ◽  
Senthilkumar Chidambaram

Abstract This investigation aims to present the jet mixing characteristics and thrust variations of the subsonic jet employed with plain triangular tab and semi-circular corrugated tab by numerical simulation. A triangular tab with semi-circular corrugations is used in this regard at the exit plane of a convergent nozzle, to study the behavior of the jet and its structure. The near jet flow field is studied for different Mach numbers of 0.6, 0.8 and 1, and the comparisons were done for the jet employed with plain triangular tab. To validate the numerical results, experimental validation is carried out for 0.6 Mach jet. The thrust and the potential core length of any jet depend mainly on the percentage of blockage ratio. Since the relationship between the thrust and blockage ratio is such that, the blockage ratio increases, the thrust and the potential core length decreases and vice-versa. The blockage ratio is kept 8.27 % for both the corrugated and plain triangular tabs. From the results, it is found that the Potential core length of the free jet is cut down to 66 % by the jet employed with plain triangular tab, whereas it is 64.5 % for the corrugated tab enabled jet. It is also concluded that the corrugated tab enhances the thrust by 4.43 % for the same blockage ratio and increases potential core length by 3.33 % when compared with the plain triangular tab. This increase in thrust is there by an added advantage of this investigation.


2003 ◽  
pp. 89-98 ◽  
Author(s):  
Kazuhiko NISHIDA ◽  
Tatuaki NISHIGATA ◽  
Tomio TAMANO ◽  
Hiroyuki MORIMOTO

Sign in / Sign up

Export Citation Format

Share Document