scholarly journals Generalized Pauli constraints in large systems: The Pauli principle dominates

2021 ◽  
Vol 62 (3) ◽  
pp. 032204
Author(s):  
Robin Reuvers
2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Chun-xia Dou ◽  
Zhi-sheng Duan ◽  
Xing-bei Jia ◽  
Xiao-gang Li ◽  
Jin-zhao Yang ◽  
...  

A delay-dependent robust fuzzy control approach is developed for a class of nonlinear uncertain interconnected time delay large systems in this paper. First, an equivalent T–S fuzzy model is extended in order to accurately represent nonlinear dynamics of the large system. Then, a decentralized state feedback robust controller is proposed to guarantee system stabilization with a prescribedH∞disturbance attenuation level. Furthermore, taking into account the time delays in large system, based on a less conservative delay-dependent Lyapunov function approach combining with linear matrix inequalities (LMI) technique, some sufficient conditions for the existence ofH∞robust controller are presented in terms of LMI dependent on the upper bound of time delays. The upper bound of time-delay and minimizedH∞performance index can be obtained by using convex optimization such that the system can be stabilized and for all time delays whose sizes are not larger than the bound. Finally, the effectiveness of the proposed controller is demonstrated through simulation example.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitriy S. Shapiro

AbstractUnder nonequilibrium conditions, quantum optical systems reveal unusual properties that might be distinct from those in condensed matter. The fundamental reason is that photonic eigenstates can have arbitrary occupation numbers, whereas in electronic systems these are limited by the Pauli principle. Here, we address the steady-state transport of pseudothermal photons between two waveguides connected through a cavity with Bose–Hubbard interaction between photons. One of the waveguides is subjected to a broadband incoherent pumping. We predict a continuous transition between the regimes of Lorentzian and Gaussian chaotic light emitted by the cavity. The rich variety of nonequilibrium transport regimes is revealed by the zero-frequency noise. There are three limiting cases, in which the noise-current relation is characterized by a power-law, $$S\propto J^\gamma$$ S ∝ J γ . The Lorentzian light corresponds to Breit-Wigner-like transmission and $$\gamma =2$$ γ = 2 . The Gaussian regime corresponds to many-body transport with the shot noise ($$\gamma =1$$ γ = 1 ) at large currents; at low currents, however, we find an unconventional exponent $$\gamma =3/2$$ γ = 3 / 2 indicating a nontrivial interplay between multi-photon transitions and incoherent pumping. The nonperturbative solution for photon dephasing is obtained in the framework of the Keldysh field theory and Caldeira-Leggett effective action. These findings might be relevant for experiments on photon blockade in superconducting qubits, thermal states transfer, and photon statistics probing.


Queue ◽  
2009 ◽  
Vol 7 (6) ◽  
pp. 40-49
Author(s):  
Iosif Legrand ◽  
Ramiro Voicu ◽  
Catalin Cirstoiu ◽  
Costin Grigoras ◽  
Latchezar Betev ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 465
Author(s):  
Agnieszka Prusińska ◽  
Krzysztof Szkatuła ◽  
Alexey Tret’yakov

This paper proposes a method for solving optimisation problems involving piecewise quadratic functions. The method provides a solution in a finite number of iterations, and the computational complexity of the proposed method is locally polynomial of the problem dimension, i.e., if the initial point belongs to the sufficiently small neighbourhood of the solution set. Proposed method could be applied for solving large systems of linear inequalities.


Author(s):  
Jonas Dünnebacke ◽  
Stefan Turek ◽  
Christoph Lohmann ◽  
Andriy Sokolov ◽  
Peter Zajac

We discuss how “parallel-in-space & simultaneous-in-time” Newton-multigrid approaches can be designed which improve the scaling behavior of the spatial parallelism by reducing the latency costs. The idea is to solve many time steps at once and therefore solving fewer but larger systems. These large systems are reordered and interpreted as a space-only problem leading to multigrid algorithm with semi-coarsening in space and line smoothing in time direction. The smoother is further improved by embedding it as a preconditioner in a Krylov subspace method. As a prototypical application, we concentrate on scalar partial differential equations (PDEs) with up to many thousands of time steps which are discretized in time, resp., space by finite difference, resp., finite element methods. For linear PDEs, the resulting method is closely related to multigrid waveform relaxation and its theoretical framework. In our parabolic test problems the numerical behavior of this multigrid approach is robust w.r.t. the spatial and temporal grid size and the number of simultaneously treated time steps. Moreover, we illustrate how corresponding time-simultaneous fixed-point and Newton-type solvers can be derived for nonlinear nonstationary problems that require the described solution of linearized problems in each outer nonlinear step. As the main result, we are able to generate much larger problem sizes to be treated by a large number of cores so that the combination of the robustly scaling multigrid solvers together with a larger degree of parallelism allows a faster solution procedure for nonstationary problems.


Sign in / Sign up

Export Citation Format

Share Document