scholarly journals Inhibition of Candida albicans hypha formation in biofilm formation by Ruta angustifolia extract

2021 ◽  
Author(s):  
Shafa Noer ◽  
Abinawanto ◽  
Boy M. Bachtiar ◽  
Anom Bowolaksono
2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Hubertine M. E. Willems ◽  
Jeremy S. Stultz ◽  
Molly E. Coltrane ◽  
Jabez P. Fortwendel ◽  
Brian M. Peters

ABSTRACT Receipt of parenteral nutrition (PN) remains an independent risk factor for developing catheter-related bloodstream infections (CR-BSI) caused by fungi, including by the polymorphic fungus Candida albicans, which is notoriously adept at forming drug-resistant biofilm structures. Among a variety of macronutrients, PN solutions contain lipid emulsions to supply daily essential fats and are often delivered via central venous catheters (CVCs). Therefore, using an in vitro biofilm model system, we sought to determine whether various clinical lipid emulsions differentially impacted biofilm growth in C. albicans. We observed that the lipid emulsions Intralipid and Omegaven both stimulated C. albicans biofilm formation during growth in minimal medium or a macronutrient PN solution. Conversely, Smoflipid inhibited C. albicans biofilm formation by approximately 50%. Follow-up studies revealed that while Smoflipid did not impair C. albicans growth, it did significantly inhibit hypha formation and hyphal elongation. Moreover, growth inhibition could be recapitulated in Intralipid when supplemented with capric acid—a fatty acid present in Smoflipid but absent in Intralipid. Capric acid was also found to dose dependently inhibit C. albicans biofilm formation in PN solutions. This is the first study to directly compare different clinical lipid emulsions for their capacity to affect C. albicans biofilm growth. Results derived from this study necessitate further research regarding different lipid emulsions and rates of fungus-associated CR-BSIs.


2021 ◽  
Author(s):  
Young Kwang Park ◽  
Jisoo Shin ◽  
Hee-Yoon Lee ◽  
Hag Dong Kim ◽  
Joon Kim

The opportunistic human fungal pathogen Candida albicans has morphogenesis as a virulence factor. The morphogenesis of C. albicans is closely related to pathogenicity. Ras1 in C. albicans is an important switch in the MAPK pathway for morphogenesis. The MAPK pathway is important for the virulence, such as cell growth, morphogenesis, and biofilm formation. Ume6 is a well-known transcriptional factor for hyphal-specific genes. Despite numerous studies, as a recent issue, it is necessary to develop a new drug that uses a different pathway mechanism to inhibit resistant C. albicans strains caused by chronic prescription of azole or echinocandin drugs, which are mainly used. Here, we show that the small carbazole derivatives attenuated the pathogenicity of C. albicans through inhibition of the Ras1/MAPK pathway. We found that the small molecules inhibit morphogenesis through repressing protein and RNA levels in Ras/MAPK related genes including UME6 and NRG1 . Furthermore, we found the antifungal effect of the small molecules in vivo using a candidiasis murine model. We anticipate our findings are that the small molecules are the promising compounds for the development of new antifungal agents for the treatment of systemic candidiasis and possibly for other fungal diseases.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Logan McCool ◽  
Hanh Mai ◽  
Michael Essmann ◽  
Bryan Larsen

Object. To determine if tetracycline, previously reported to increase the probability of developing symptomatic vaginal yeast infections, has a direct effect onCandida albicansgrowth or induction of virulent phenotypes.Method. In vitro, clinical isolates of yeast were cultivated with sublethal concentrations of tetracycline and yeast cell counts, hyphal formation, drug efflux pump activity, biofilm production, and hemolysin production were determined by previously reported methods.Results. Tetracycline concentrations above 150 μg/mL inhibitedCandida albicans, but at submicrogram/mL, a modest growth increase during the early hours of the growth curve was observed. Tetracycline did not inhibit hyphal formation at sublethal concentrations. Hypha formation appeared augmented by exposure to tetracycline in the presence of chemically defined medium and especially in the presence of human serum. Efflux pumpCDR1was upregulated and a nonsignificant trend toward increased biofilm formation was noted.Conclusion. Tetracycline appears to have a small growth enhancing effect and may influence virulence through augmentation of hypha formation, and a modest effect on drug efflux and biofilm formation, although tetracycline did not affect hemolysin. It is not clear if the magnitude of the effect is sufficient to attribute vaginitis following tetracycline treatment to direct action of tetracycline on yeast.


mSphere ◽  
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Pim T. van Leeuwen ◽  
Jasper M. van der Peet ◽  
Floris J. Bikker ◽  
Michel A. Hoogenkamp ◽  
Ana M. Oliveira Paiva ◽  
...  

ABSTRACT Candida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease. The facultative anaerobic polymorphic fungus Candida albicans and the strictly anaerobic Gram-positive bacterium Clostridium difficile are two opportunistic pathogens residing in the human gut. While a few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, the nature of the interactions between these two microbes has not been studied thus far. In the current study, both chemical and physical interactions between C. albicans and C. difficile were investigated. In the presence of C. albicans, C. difficile was able to grow under aerobic, normally toxic, conditions. This phenomenon was neither linked to adherence of bacteria to hyphae nor to biofilm formation by C. albicans. Conditioned medium of C. difficile inhibited hyphal growth of C. albicans, which is an important virulence factor of the fungus. In addition, it induced hypha-to-yeast conversion. p-Cresol, a fermentation product of tyrosine produced by C. difficile, also induced morphological effects and was identified as an active component of the conditioned medium. This study shows that in the presence of C. albicans, C. difficile can persist and grow under aerobic conditions. Furthermore, p-cresol, produced by C. difficile, is involved in inhibiting hypha formation of C. albicans, directly affecting the biofilm formation and virulence of C. albicans. This study is the first detailed characterization of the interactions between these two gut pathogens. IMPORTANCE Candida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


Author(s):  
Gunderao Hanumantrao Kathwate ◽  
Ravikumar Bapurao Shinde ◽  
S. Mohan Karuppayil

Sign in / Sign up

Export Citation Format

Share Document