Determination of dimensionless figure of merit in time and frequency domains

2021 ◽  
Vol 92 (8) ◽  
pp. 083902
Author(s):  
Yasuhiro Hasegawa ◽  
Mai Takeuchi
2015 ◽  
Vol 135 (12) ◽  
pp. 1565-1573
Author(s):  
Yoshitaka Ohshio ◽  
Daisuke Ikefuji ◽  
Yuko Suhara ◽  
Masato Nakayama ◽  
Takanobu Nishiura

Author(s):  
Włodzimierz Pogribny ◽  
Marcin Drzycimski ◽  
Zdzisław Drzycimski

2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2021 ◽  
Vol 291 ◽  
pp. 116721
Author(s):  
Han Li ◽  
Zhe Wang ◽  
Tianzhen Hong ◽  
Andrew Parker ◽  
Monica Neukomm

Sign in / Sign up

Export Citation Format

Share Document