scholarly journals Thermal conductivity, electrical resistivity, and dimensionless figure of merit (ZT) determination of thermoelectric materials by impedance spectroscopy up to 250 °C

2018 ◽  
Vol 124 (2) ◽  
pp. 025105 ◽  
Author(s):  
Braulio Beltrán-Pitarch ◽  
Jesús Prado-Gonjal ◽  
Anthony V. Powell ◽  
Pawel Ziolkowski ◽  
Jorge García-Cañadas
2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2003 ◽  
Vol 793 ◽  
Author(s):  
Matthieu Puyet ◽  
Bertrand Lenoir ◽  
Anne Dauscher ◽  
Hubert Scherrer ◽  
Moukrane Dehmas ◽  
...  

ABSTRACTThe transport properties of the partially filled CaxCo4-yNiySb12 skutterudite compounds have been investigated in the 300 – 800 K temperature range. We underline the positive influence of the Ni substitution on the electrical resistivity and thermopower while the thermal properties – thermal conductivity – remains almost unaffected. These results suggest again a beneficial effect of Ni atoms on the dimensionless figure of merit in CoSb3 based compounds.


2015 ◽  
Vol 29 (14) ◽  
pp. 1550082 ◽  
Author(s):  
Yubo Chen ◽  
Runxiang Ma ◽  
Kunlun Wang ◽  
Feng Gao ◽  
Xing Hu ◽  
...  

The effects of Pb doping on the thermoelectric (TE) properties of Yb 1-x Pb x BaCo4O7+δ (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) ceramic samples prepared by the solid-state reaction method were investigated from 383 K to 973 K. The results showed that with increase of the Pb content, the electrical resistivity decreased remarkably, meanwhile the Seebeck coefficient decreased slightly, resulting in an enhancement of the power factor (PF). The effect of Pb doping on the thermal conductivity was insignificant. According to the PF and the dimensionless figure of merit (ZT) value, the optimum Pb doping content was x = 0.08. The ZT value reached 0.12 at 973 K, being 69.5% higher than that of the sample without Pb doping.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Kohsuke Hashimoto ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

AbstractWe studied the thermoelectric properties of BaSi2 and SrSi2. The polycrystalline samples were prepared by spark plasma sintering (SPS). The electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) were measured above room temperature. The maximum values of the dimensionless figure of merit (ZT) were 0.01 at 954 K for BaSi2 and 0.09 at 417 K for SrSi2. We tried to enhance the ZT values of BaSi2 and SrSi2 by prepareing and characterizing La-doped BaSi2 and (Ba,Sr)Si2 solid solution.


1966 ◽  
Vol 44 (5) ◽  
pp. 971-985 ◽  
Author(s):  
W. B. Muir

A Peltier–Seebeck or Harman type apparatus has been constructed to measure the Seebeclc coefficient, α, thermal conductivity, κ, electrical resistivity, ρ, and the figure of merit, Z, of thermoelectric materials over the range of temperature 150–300 °K while maintaining the sample in an approximately isothermal environment. Errors in the measured values of ρ, Z, α, and κ have been kept within 1, 1.5, 3, and 5% respectively. A comparison of the maximum temperature difference, ΔTmax, measured in a cooling test and the value of ΔTmax calculated from the values of α, κ, and ρ as a function of temperature measured in the Harman apparatus shows that, for five thermocouples, agreement is obtained within 1.2 °K on the average, with the greatest disparity being 2.5 °K.


2003 ◽  
Vol 805 ◽  
Author(s):  
Tsunehiro Takeuchi ◽  
Toshio Otagiri ◽  
Hiroki Sakagami ◽  
Uichiro Mizutani

ABSTRACTThe electrical resistivity, thermoelectric power, and thermal conductivity were investigated for the Al71.6-xMn 17.4Six and Al71.6-xRe 17.4Six (7 ≤ x ≤ 12) 1/1-cubic approximants. A large thermoelectric power ranging from -40 to 90 μV/K and a low thermal conductivity less than 3 W/K·cm were observed at room temperatures. The electrical resistivity at room temperature for these approximants was kept below 4,000 μΩcm, that is much smaller than that in the corresponding quasicrystals. As a result of the large thermoelectric power, the low thermal conductivity, and the low electrical resistivity, large dimensionless figure of merit ZT = 0.10 (n-type) and 0.07 (p-type) were achieved for the Al71.6Re17.4Si11 and Al71.6Mn17.4Si11 at room temperature, respectively.


2017 ◽  
Vol 31 (28) ◽  
pp. 1750261 ◽  
Author(s):  
Yiping Jiang ◽  
Xiaopeng Jia ◽  
Hongan Ma

The skutterudite CoSb[Formula: see text]Te[Formula: see text]Sn[Formula: see text] compound was synthesized successfully by high pressure and high temperature (HPHT) method using Co, Sb, Te and Sn powder as raw materials. The effects of pressure on its structure and the thermoelectric properties are investigated systematically from 300 K to 800 K. The electrical resistivity and the absolute value of the Seebeck coefficient for the sample increases with rising synthetic pressure. The thermal conductivity of the sample decreases with synthetic pressure and temperature rising in the range of 300–800 K. In this study, the maximum dimensionless figure of merit (ZT) value of 1.17 has been achieved at 793 K, 3 GPa for this thermoelectric material.


2013 ◽  
Vol 750 ◽  
pp. 130-133
Author(s):  
Katsuhiro Sagara ◽  
Yun Lu ◽  
Dao Cheng Luan

Analysis model of finite element method with a random distribution for thermoelectric composites was built. Thermoelectric properties including electrical resistivity, Seebeck coefficient and thermal conductivity of M/TiO2–x (M = Cu, Ni, 304 stainless steel (304SS)) thermoelectric composites were investigated by the proposed model. Cu/TiO2–x composite showed a large decrease in electrical resistivity while 304SS/TiO2–x composite thermal conductivity was slightly increased. Calculated dimensionless figure-of-merit, ZT of Ni/TiO2–x composite was higher than those of TiO2–x and the other composites in a wide range of metal volume fractions because Ni has large absolute values of Seebeck coefficient, power factor and dimensionless figure-of-merit compared to the other two metals. It was found that power factor and dimensionless figure-of-merit of thermoelectric composites depended on the balance among electrical resistivity, thermal conductivity and Seebeck coefficient. The results revealed that it is important for M/TiO2–x composites to choose suitable addition metal with high power factor and dimensionless figure-of-merit.


Sign in / Sign up

Export Citation Format

Share Document