scholarly journals High-strain-rate mechanical response of HTPE propellant under SHPB impact loading

AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035145
Author(s):  
Heng-ning Zhang ◽  
Hai Chang ◽  
Jun-qiang Li ◽  
Xiao-jiang Li ◽  
Han Wang
2019 ◽  
Vol 6 (2) ◽  
pp. 40 ◽  
Author(s):  
Raj K. Prabhu ◽  
Mark T. Begonia ◽  
Wilburn R. Whittington ◽  
Michael A. Murphy ◽  
Yuxiong Mao ◽  
...  

Designing protective systems for the human head—and, hence, the brain—requires understanding the brain’s microstructural response to mechanical insults. We present the behavior of wet and dry porcine brain undergoing quasi-static and high strain rate mechanical deformations to unravel the effect of hydration on the brain’s biomechanics. Here, native ‘wet’ brain samples contained ~80% (mass/mass) water content and ‘dry’ brain samples contained ~0% (mass/mass) water content. First, the wet brain incurred a large initial peak stress that was not exhibited by the dry brain. Second, stress levels for the dry brain were greater than the wet brain. Third, the dry brain stress–strain behavior was characteristic of ductile materials with a yield point and work hardening; however, the wet brain showed a typical concave inflection that is often manifested by polymers. Finally, finite element analysis (FEA) of the brain’s high strain rate response for samples with various proportions of water and dry brain showed that water played a major role in the initial hardening trend. Therefore, hydration level plays a key role in brain tissue micromechanics, and the incorporation of this hydration effect on the brain’s mechanical response in simulated injury scenarios or virtual human-centric protective headgear design is essential.


2019 ◽  
Vol 43 (4) ◽  
pp. 684-697 ◽  
Author(s):  
Yuanyuan Zheng ◽  
Lin Zhang ◽  
Qiaoying Shi ◽  
Chengshuang Zhou ◽  
Jinyang Zheng

MRS Advances ◽  
2016 ◽  
Vol 1 (17) ◽  
pp. 1197-1202
Author(s):  
J.A. Brown ◽  
D.M. Bond ◽  
M.A. Zikry

ABSTRACTA dislocation-density based crystalline plasticity, a finite viscoelasticity, and a nonlinear finite-element formulation were used to study the high strain-rate failure of energetic crystalline aggregates. The energetic crystals of RDX (cyclotrimethylene trinitramine) with a polymer binder were subjected to high strain-rate tensile loading, and the predictions indicate that high localized stresses and stress gradients develop due to mismatches along crystalline-crystalline and crystalline-amorphous interfaces. These high-stress interfaces are sites for crack nucleation and propagation, and the predictions are used to show how the cracks nucleate and propagate.


2018 ◽  
Vol 10 (07) ◽  
pp. 1850072 ◽  
Author(s):  
Suneev Anil Bansal ◽  
Amrinder Pal Singh ◽  
Suresh Kumar

The present work investigates the novel impact loading response of two-dimensional graphene oxide (GO) reinforced epoxy nanocomposites at high strain rate. The testing was performed up to 1000[Formula: see text]s[Formula: see text] of high strain rate, where maximum damage occurs during the impact loading conditions. The Split Hopkinson Pressure Bar (SHPB) was used for the impact loading of the composite specimen. The nanofiller material GO was synthesized by chemical oxidation of graphite flakes used as the precurser. Synthesized GO was characterized using FTIR, UV-visible, XRD, Raman Spectroscopy and FE-SEM. Solution mixing method was used to fabricate the nanocomposite samples having uniform dispersion of GO as confirmed from the SEM images. Strain gauges mounted on the SHPB showed regular signal of transmitted wave during high strain rate testing on SHPB, confirming the regular dispersion of both the phases. Results of the transmission signal showed that the solution mixing method was effective in the synthesis of almost defect-free nanocomposite samples. The strength of the nanocomposite improved significantly using 0.5[Formula: see text]wt.% reinforcement of GO in the epoxy matrix at high strain rate loading. The epoxy GO nanocomposite showed a 41% improvement in maximum stress at 815[Formula: see text]s[Formula: see text] strain rate loading.


Sign in / Sign up

Export Citation Format

Share Document