Effect of magnetic field-dependent effective thermal conductivity of melted layer on nanosecond laser ablation of copper and formation of nanoparticles at atmospheric air pressure

2021 ◽  
Vol 130 (4) ◽  
pp. 043302
Author(s):  
Khwairakpam Shantakumar Singh ◽  
Ashwini Kumar Sharma
Author(s):  
Chang Ye ◽  
Gary J. Cheng ◽  
Sha Tao ◽  
Benxin Wu

A magnetic field-assisted laser drilling process has been studied, where nanosecond laser ablation is performed under an external magnetic field. The study shows that the magnetic field-assisted laser drilling process produces deeper drilling depth and generates more confined plasma plume and relative less residual, as compared with laser drilling without magnetic field. This phenomenon has been rarely reported in the literature. The magnetic field effects on laser ablation have been analyzed analytically and a hypothesized explanation has been proposed based on the effect of the magnetic field on the plasma produced during laser ablation.


Author(s):  
Sha Tao ◽  
Benxin Wu ◽  
Yun Zhou ◽  
Gary J. Cheng

In this paper a two-stage physics-based model has been applied to study the evolution of plasma produced by high-intensity nanosecond laser ablation in vacuum under external magnetic field. In the early stage (Stage I), the laser-induced plasma generation and its short-term evolution are described through one-dimensional (1D) hydrodynamic equations. An equation of state (EOS) that can cover the density and temperature range in the whole physical domain has been applied to supplement the hydrodynamic equations. In the later stage (Stage II), the plasma long-term evolution is simulated by solving 2D gas dynamic equations. The two-stage model can predict the spatial distributions and temporal evolutions of plasma temperature, density, velocity, and other parameters. The model is used to study and discuss the effects of external magnetic field on the plasma evolution. It provides a useful tool for related fundamental studies and practical applications.


2014 ◽  
Vol 22 (4) ◽  
pp. 3991 ◽  
Author(s):  
Santiago Palanco ◽  
Salvatore Marino ◽  
M. Gabás ◽  
Shanti Bijani ◽  
Luis Ayala ◽  
...  

2019 ◽  
Vol 29 (4) ◽  
pp. 1466-1489 ◽  
Author(s):  
Mohammadhossein Hajiyan ◽  
Shohel Mahmud ◽  
Mohammad Biglarbegian ◽  
Hussein A. Abdullah ◽  
A. Chamkha

Purpose The purpose of this paper is to investigate the convective heat transfer of magnetic nanofluid (MNF) inside a square enclosure under uniform magnetic fields considering nonlinearity of magnetic field-dependent thermal conductivity. Design/methodology/approach The properties of the MNF (Fe3O4+kerosene) were described by polynomial functions of magnetic field-dependent thermal conductivity. The effect of the transverse magnetic field (0 < H < 105), Hartmann Number (0 < Ha < 60), Rayleigh number (10 <Ra <105) and the solid volume fraction (0 < φ < 4.7%) on the heat transfer performance inside the enclosed space was examined. Continuity, momentum and energy equations were solved using the finite element method. Findings The results show that the Nusselt number increases when the Rayleigh number increases. In contrast, the convective heat transfer rate decreases when the Hartmann number increases due to the strong magnetic field which suppresses the buoyancy force. Also, a significant improvement in the heat transfer rate is observed when the magnetic field is applied and φ = 4.7% (I = 11.90%, I = 16.73%, I = 10.07% and I = 12.70%). Research limitations/implications The present numerical study was carried out for a steady, laminar and two-dimensional flow inside the square enclosure. Also, properties of the MNF are assumed to be constant (except thermal conductivity) under magnetic field. Practical implications The results can be used in thermal storage and cooling of electronic devices such as lithium-ion batteries during charging and discharging processes. Originality/value The accuracy of results and heat transfer enhancement having magnetic field-field-dependent thermal conductivity are noticeable. The results can be used for different applications to improve the heat transfer rate and enhance the efficiency of a system.


Sign in / Sign up

Export Citation Format

Share Document