Simulation of runoff using HEC-HMS for ungauged catchment

2021 ◽  
Author(s):  
A. Nazirah ◽  
W. O. Wan Mohd Sabki ◽  
H. Zulkarnian ◽  
A. Afizah
Keyword(s):  
2014 ◽  
Vol 18 (6) ◽  
pp. 2393-2413 ◽  
Author(s):  
H. Sellami ◽  
I. La Jeunesse ◽  
S. Benabdallah ◽  
N. Baghdadi ◽  
M. Vanclooster

Abstract. In this study a method for propagating the hydrological model uncertainty in discharge predictions of ungauged Mediterranean catchments using a model parameter regionalization approach is presented. The method is developed and tested for the Thau catchment located in Southern France using the SWAT hydrological model. Regionalization of model parameters, based on physical similarity measured between gauged and ungauged catchment attributes, is a popular methodology for discharge prediction in ungauged basins, but it is often confronted with an arbitrary criterion for selecting the "behavioral" model parameter sets (Mps) at the gauged catchment. A more objective method is provided in this paper where the transferrable Mps are selected based on the similarity between the donor and the receptor catchments. In addition, the method allows propagating the modeling uncertainty while transferring the Mps to the ungauged catchments. Results indicate that physically similar catchments located within the same geographic and climatic region may exhibit similar hydrological behavior and can also be affected by similar model prediction uncertainty. Furthermore, the results suggest that model prediction uncertainty at the ungauged catchment increases as the dissimilarity between the donor and the receptor catchments increases. The methodology presented in this paper can be replicated and used in regionalization of any hydrological model parameters for estimating streamflow at ungauged catchment.


2012 ◽  
Vol 16 (2) ◽  
pp. 551-562 ◽  
Author(s):  
S. Patil ◽  
M. Stieglitz

Abstract. Prediction of streamflow at ungauged catchments requires transfer of hydrologic information (e.g., model parameters, hydrologic indices, streamflow values) from gauged (donor) to ungauged (receiver) catchments. A common metric used for the selection of ideal donor catchments is the spatial proximity between donor and receiver catchments. However, it is not clear whether information transfer among nearby catchments is suitable across a wide range of climatic and geographic regions. We examine this issue using the data from 756 catchments within the continental United States. Each catchment is considered ungauged in turn and daily streamflow is simulated through distance-based interpolation of streamflows from neighboring catchments. Results show that distinct geographic regions exist in US where transfer of streamflow values from nearby catchments is useful for retrospective prediction of daily streamflow at ungauged catchments. Specifically, the high predictability catchments (Nash-Sutcliffe efficiency NS > 0.7) are confined to the Appalachian Mountains in eastern US, the Rocky Mountains, and the Cascade Mountains in the Pacific Northwest. Low predictability catchments (NS < 0.3) are located mostly in the drier regions west of Mississippi river, which demonstrates the limited utility of gauged catchments in those regions for predicting at ungauged basins. The results suggest that high streamflow similarity among nearby catchments (and therefore, good predictability at ungauged catchments) is more likely in humid runoff-dominated regions than in dry evapotranspiration-dominated regions. We further find that higher density and/or closer distance of gauged catchments near an ungauged catchment does not necessarily guarantee good predictability at an ungauged catchment.


2017 ◽  
Vol 5 (3) ◽  
pp. 233-242
Author(s):  
Lei Chen ◽  
Shuang Li ◽  
Guobo Wang ◽  
Jiajia Xu ◽  
Zhenyao Shen

2015 ◽  
Vol 29 (17) ◽  
pp. 3665-3676 ◽  
Author(s):  
Rui Wang ◽  
Zhijun Yao ◽  
Zhaofei Liu ◽  
Shanshan Wu ◽  
Liguang Jiang ◽  
...  

2011 ◽  
Vol 8 (5) ◽  
pp. 9323-9355 ◽  
Author(s):  
S. Patil ◽  
M. Stieglitz

Abstract. Prediction of streamflows at ungauged catchments requires transfer of hydrologic information (e.g., model parameters, hydrologic indices, streamflow values) from gauged (donor) to ungauged (receiver) catchments. One of the most reliable metrics for selection of ideal donor catchments is the spatial proximity between donor and receiver catchments. However, it is not clear whether information transfer among nearby catchments is suitable across a wide range of climatic and geographic regions. We examine this issue using the data from 756 catchments within the continental United States. Each catchment is considered ungauged in turn and daily streamflow is simulated through distance-based interpolation of streamflows from neighboring catchments. Results show that distinct geographic regions exist in US where transfer of streamflow values from nearby catchments is useful for retrospective prediction of daily streamflow at ungauged catchments. Specifically, the high predictability catchments (Nash-Sutcliffe efficiency NS > 0.7) are confined to the Appalachian Mountains in eastern US, the Rocky Mountains, and the Cascade Mountains in the Pacific Northwest. Low predictability catchments (NS < 0.3) are located mostly in the drier regions west of Mississippi river, which demonstrates the limited utility of gauged catchments in those regions for predicting at ungauged basins. The results suggest that high streamflow similarity among nearby catchments (and therefore, good predictability at ungauged catchments) is more likely in humid runoff-dominated regions than in dry evapotranspiration-dominated regions. We further find that higher density and/or closer distance of gauged catchments near an ungauged catchment does not necessarily guarantee good predictability at an ungauged catchment.


2018 ◽  
Vol 10 (3) ◽  
pp. 554-568 ◽  
Author(s):  
Janaki Ballav Swain ◽  
Kanhu Charan Patra

Abstract The variation in land use/land cover (LULC) and climate have a direct impact on the accuracy of any hydrological prediction. However, quantification of the effect of these two factors in an ungauged catchment setting is less discussed. Soil and Water Assessment Tool (SWAT) in combination with two regionalization techniques, i.e., Inverse Distance Weighted (IDW) and Kriging were applied on 32 catchments in India where each catchment was considered as ungauged at least once. The combined and isolated impacts of LULC change (LULCC) and climate variability on streamflow for the period of 1990–2011 were quantified at an annual scale through four different cases. Satisfactory results were obtained from SWAT for the analysis of both the gauged and ungauged set-up. The overall outcomes suggest that, due to the influence of the combined effects of LULCC and climate variability, there was a decrease in the annual streamflow volume by more than 21% from the first period (1990–2000) to the second period (2001–2011) in the selected catchment treated as ungauged. The variable climate factor overshadowed the effect of LULCC. The result may be correlated with the increase in temperature and the decrease in rainfall volume, which is distinctive in a monsoon-dominated country like India.


Sign in / Sign up

Export Citation Format

Share Document