Air flow quality analysis in optimizing MODENAS GT128 engine performance

2021 ◽  
Author(s):  
M. T. A. Rahman ◽  
A. Rahman ◽  
N. S. Ahmat ◽  
G. E. Suhri
2020 ◽  
Vol 32 (12) ◽  
pp. 125120
Author(s):  
María Jiménez-Portaz ◽  
Luca Chiapponi ◽  
María Clavero ◽  
Miguel A. Losada

2017 ◽  
Author(s):  
Shahriman A. B. ◽  
Mohamad Syafiq A. K. ◽  
M. S. M. Hashim ◽  
Zuradzman M. Razlan ◽  
Khairunizam W. A. N. ◽  
...  

Author(s):  
Liu Jian Jun

An analytical study was undertaken using the performance model of a two spool direct drive high BPR 300kN thrust turbofan engine, to investigate the effects of advanced configurations on overall engine performance. These include variable bypass nozzle, variable cooling air flow and more electric technique. For variable bypass nozzle, analysis on performance of outer fan at different conditions indicates that different operating points cannot meet optimal performance at the same time if the bypass nozzle area kept a constant. By changing bypass nozzle throat area at different states, outer fan operating point moves to the location where airflow and efficiency are more appropriate, and have enough margin away from surge line. As a result, the range of variable area of bypass nozzle throat is determined which ensures engine having a low SFC and adequate stability. For variable cooling airflow, configuration of turbine cooling air flow extraction and methodology for obtaining change of cooling airflow are investigated. Then, base on temperature analysis of turbine vane and blade and resistance of cooling airflow, reduction of cooling airflow is determined. Finally, using performance model which considering effect of cooling air flow on work and efficiency of turbine, variable cooling airflow effect on overall performance is analyzed. For more electric technique, the main characteristic is to use power off-take instead of overboard air extraction. Power off-take and air extraction effect on overall performance of high bypass turbofan engine is compared. Investigation demonstrates that power offtake will have less SFC.


Author(s):  
Herman B. Urbach ◽  
Donald T. Knauss ◽  
Richard W. Garman ◽  
Ashwani K. Gupta ◽  
Michael R. Sexton

The steam-augmented gas turbine (SAGT) differs from commercial steam-injected gas turbines where steam flow may be considerably less than 15% of air flow. SAGT combustors may operate near stoichiometric combustion conditions with steam flow as high as 50% of air flow, thus achieving specific powers exceeding 555 hp-sec/lb. A previous simulation study of the steam-augmented gas turbine, which did not include compressor and turbine maps, examined the applicability of the concept in the Navy’s DDG-51-class ship environment. In this re-examination, component maps were employed to establish credible off-design engine performance, and to confirm estimates of overall ship fuel requirements based solely on anticipated component efficiencies. Also, the present simulation employs a heat-exchanger sub-program fully integrated into the main software program. The re-examination has led to several revisions and refinements of previous conclusions, which are discussed in the text. The SAGT engine concept described herein, dispenses with intercoolers, but adds a low-pressure reheat combustor. The low-pressure combustor flame temperature exceeds 2700° F, which analyses show to be stable. Exhaust gas temperatures are not permitted to fall below 450° F, and the heat recovery steam generator is designed to hold feedwater temperatures close to 300° F to avoid the gas-side acid dewpoint. At the most efficient operating points, the efficiency of this new reheat SAGT engine exceeds 44.5% with a 2200° F turbine inlet temperature, at an ambient 100°-F temperature. Moreover, it exhibits a 23% reduction in overall system volume. Simulation data show that the maximum efficiency of the SAGT engine peaks at engine powers required for cruising speeds, in contrast to the efficiency of the LM2500, which peaks at full-throttle. Since Navy ships operate near cruise conditions for the majority of their mission time, a SAGT plant uses 29% less fuel than the baseline LM2500 plant. Moreover, employing conservative cost estimates, the SAGT plant is quite competitive on a first-acquisition cost basis with gas turbines currently in the fleet.


2012 ◽  
Vol 443-444 ◽  
pp. 1007-1013
Author(s):  
Hong Jiang Cui ◽  
Ming Hai Li ◽  
Ying Guan

.In order to manufacture high quality intake port with bigger discharge coefficient and appropriate swirl ratio for diesel engine performance improvement, intake port tests and CFD simulation method were combined together to optimize its structure. The three-dimensional CAD model of intake port was built and was putted into AVL–FIRE platform to do CFD simulation with appropriate turbulence model and calculation method. The detailed air flow information was obtained by CFD simulation. After analyzing, two optimization programs were discussed. This research shows that CFD simulation is a powerful method to design diesel engine intake port; air flow condition is complex in the intake port; intake port structure optimization can increase the discharge coefficient and improve the air flow condition.


Author(s):  
Michael R. Sexton ◽  
Herman B. Urbach ◽  
Donald T. Knauss

Water, in the liquid or vapor phase, injected at various locations into the gas turbine cycle has frequently been employed to improve engine performance while simultaneously reducing NOx emissions. Commercial steam injected gas turbines have been designed to inject small amounts of steam (less than 15% of air flow), generated in a heat recovery boiler, into or downstream of the combustor. Recently, it has been proposed to inject larger amounts of water (as high as 50% of air flow) and operate combustors near stoichiometric conditions. All these methods increase turbine mass flow rate without increasing air flow rate and consequently increase specific power. The increase in specific power for naval applications means smaller intake and exhaust stacks and therefore less impact on topside space. The present paper presents a new concept, in naval propulsion plants, to decrease NOx production and increase specific power with a water fog (droplet spray) injected (WFI) directly into the inlet of the engine compressor. The simulated performance of a simple-cycle gas turbine engine using WFI is reported. The paper describes the computer model developed to predict compressor performance resulting from the evaporation of water passing through the stages of an axial flow compressor. The resulting effects are similar to those of an intercooled compressor, without the complications due to the addition of piping, heat exchangers, and the requirement for a dual spool compressor. The effects of evaporative cooling on compressor characteristics are presented. These results include compressor maps modified for various water flow rates as well as estimates of the reductions in compression work and compressor discharge temperature. These modified compressor performance characteristics are used in the engine simulation to predict how a WFI engine would perform under various water injection flow rates. Estimates of increased output power and decreased air flow rates are presented.


2018 ◽  
Vol 1065 ◽  
pp. 072034
Author(s):  
M L C C Reis ◽  
M C C Araújo ◽  
M S Souza ◽  
R R Santos

Sign in / Sign up

Export Citation Format

Share Document