Understanding rainfall characteristics during Jakarta’s flood using global satellite mapping of precipitation data (Case study: Flood in Jakarta, January 1st 2020)

2021 ◽  
Author(s):  
Dita Fatria Andarini ◽  
Anis Purwaningsih
2015 ◽  
Vol 61 (2) ◽  
pp. 321-343 ◽  
Author(s):  
M. Beyer ◽  
M. Wallner ◽  
L. Bahlmann ◽  
V. Thiemig ◽  
J. Dietrich ◽  
...  

2021 ◽  
Vol 16 (4) ◽  
pp. 786-793
Author(s):  
Yoshiaki Hayashi ◽  
Taichi Tebakari ◽  
Akihiro Hashimoto ◽  
◽  

This paper presents a case study comparing the latest algorithm version of Global Satellite Mapping of Precipitation (GSMaP) data with C-band and X-band Multi-Parameter (MP) radar as high-resolution rainfall data in terms of localized heavy rainfall events. The study also obliged us to clarify the spatial and temporal resolution of GSMaP data using high-accuracy ground-based radar, and evaluate the performance and reporting frequency of GSMaP satellites. The GSMaP_Gauge_RNL data with less than 70 mm/day of daily rainfall was similar to the data of both radars, but the GSMaP_Gauge_RNL data with over 70 mm/day of daily rainfall was not, and the calibration by rain-gauge data was poor. Furthermore, both direct/indirect observations by the Global Precipitation Measurement/Microwave Imager (GPM/GMI) and the frequency thereof (once or twice) significantly affected the difference between GPM/GMI data and C-band radar data when the daily rainfall was less than 70 mm/day and the hourly rainfall was less than 20 mm/h. Therefore, it is difficult for GSMaP_Gauge to accurately estimate localized heavy rainfall with high-density particle precipitation.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1475 ◽  
Author(s):  
Jun-Haeng Heo ◽  
Hyunjun Ahn ◽  
Ju-Young Shin ◽  
Thomas Rodding Kjeldsen ◽  
Changsam Jeong

The quantile mapping method is a bias correction method that leads to a good performance in terms of precipitation. Selecting an appropriate probability distribution model is essential for the successful implementation of quantile mapping. Probability distribution models with two shape parameters have proved that they are fit for precipitation modeling because of their flexibility. Hence, the application of a two-shape parameter distribution will improve the performance of the quantile mapping method in the bias correction of precipitation data. In this study, the applicability and appropriateness of two-shape parameter distribution models are examined in quantile mapping, for a bias correction of simulated precipitation data from a climate model under a climate change scenario. Additionally, the impacts of distribution selection on the frequency analysis of future extreme precipitation from climate are investigated. Generalized Lindley, Burr XII, and Kappa distributions are used, and their fits and appropriateness are compared to those of conventional distributions in a case study. Applications of two-shape parameter distributions do lead to better performances in reproducing the statistical characteristics of observed precipitation, compared to those of conventional distributions. The Kappa distribution is considered the best distribution model, as it can reproduce reliable spatial dependences of the quantile corresponding to a 100-year return period, unlike the gamma distribution.


2015 ◽  
Vol 537 ◽  
pp. 225-234 ◽  
Author(s):  
Natalia Pessacg ◽  
Silvia Flaherty ◽  
Laura Brandizi ◽  
Silvina Solman ◽  
Miguel Pascual

Sign in / Sign up

Export Citation Format

Share Document