Momentum(k)-space carrier separation using SiGeSn alloys for photodetector applications

2021 ◽  
Vol 130 (22) ◽  
pp. 223102
Author(s):  
Tyler T. McCarthy ◽  
Zheng Ju ◽  
Stephen Schaefer ◽  
Shui-Qing Yu ◽  
Yong-Hang Zhang
Keyword(s):  
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 705
Author(s):  
Lin Ju ◽  
Jingzhou Qin ◽  
Liran Shi ◽  
Gui Yang ◽  
Jing Zhang ◽  
...  

For the emerging Janus transition metal dichalcogenides (TMD) layered water-splitting photocatalysts, stacking the monolayers to form bilayers has been predicted to be an effective way to improve their photocatalytic performances. To achieve this, the stacking pattern plays an important role. In this work, by means of the density functional theory calculations, we comprehensively estimate energetical stability, light absorption and redox capacity of Janus WSSe bilayer with different stacking patterns. Unfortunately, the Janus WSSe bilayer with the most stable configuration recover the out-of-plane symmetry, which is not in favor of the photocatalytic reactions. However, rolling the Janus WSSe bilayer into double-walled nanotube could stabilize the appropriate stacking pattern with an enhanced instinct dipole moment. Moreover, the suitable band edge positions, high visible light absorbance, outstanding solar-to-hydrogen efficiency (up to 28.48%), and superior carrier separation promise the Janus WSSe double-walled nanotube the potential for the photocatalytic water-splitting application. Our studies not only predict an ideal water-splitting photocatalyst, but also propose an effective way to improve the photocatalytic performances of Janus layered materials.


Author(s):  
Vijay Karade ◽  
Eunyoung Choi ◽  
Myeng Gil Gang ◽  
Hyesun Yoo ◽  
Abhishek Lokhande ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1065
Author(s):  
Joseph-Hang Leung ◽  
Hong-Thai Nguyen ◽  
Shih-Wei Feng ◽  
Sofya B. Artemkina ◽  
Vladimir E. Fedorov ◽  
...  

P-type and N-type photoelectrochemical (PEC) biosensors were established in the laboratory to discuss the correlation between characteristic substances and photoactive material properties through the photogenerated charge carrier transport mechanism. Four types of human esophageal cancer cells (ECCs) were analyzed without requiring additional bias voltage. Photoelectrical characteristics were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis reflectance spectroscopy, and photocurrent response analyses. Results showed that smaller photocurrent was measured in cases with advanced cancer stages. Glutathione (L-glutathione reduced, GSH) and Glutathione disulfide (GSSG) in cancer cells carry out redox reactions during carrier separation, which changes the photocurrent. The sensor can identify ECC stages with a certain level of photoelectrochemical response. The detection error can be optimized by adjusting the number of cells, and the detection time of about 5 min allowed repeated measurement.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zicheng Li ◽  
Yifeng Gao ◽  
Zhihao Zhang ◽  
Qiu Xiong ◽  
Longhui Deng ◽  
...  

AbstractEfficient electron transport layers (ETLs) not only play a crucial role in promoting carrier separation and electron extraction in perovskite solar cells (PSCs) but also significantly affect the process of nucleation and growth of the perovskite layer. Herein, crystalline polymeric carbon nitrides (cPCN) are introduced to regulate the electronic properties of SnO2 nanocrystals, resulting in cPCN-composited SnO2 (SnO2-cPCN) ETLs with enhanced charge transport and perovskite layers with decreased grain boundaries. Firstly, SnO2-cPCN ETLs show three times higher electron mobility than pristine SnO2 while offering better energy level alignment with the perovskite layer. The SnO2-cPCN ETLs with decreased wettability endow the perovskite films with higher crystallinity by retarding the crystallization rate. In the end, the power conversion efficiency (PCE) of planar PSCs can be boosted to 23.17% with negligible hysteresis and a steady-state efficiency output of 21.98%, which is one of the highest PCEs for PSCs with modified SnO2 ETLs. SnO2-cPCN based devices also showed higher stability than pristine SnO2, maintaining 88% of the initial PCE after 2000 h of storage in the ambient environment (with controlled RH of 30% ± 5%) without encapsulation.


Sign in / Sign up

Export Citation Format

Share Document