human esophageal cancer
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 13)

H-INDEX

38
(FIVE YEARS 0)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hui Luo ◽  
Xiaohui Wang ◽  
Yunhan Wang ◽  
Qinfu Dan ◽  
Hong Ge

Abstract Background To investigate the effect of mannose on radio-sensitivity of human esophageal squamous cell carcinoma (ESCC) cell line and its possible mechanism. Methods The expression of mannose phosphate isomerase (MPI) in human esophageal cancer cell lines were detected by Western blot. The inhibitory effect of mannose on human esophageal cancer cell lines were observed by MTT assay. Plate clone formation assay was performed to investigate the efficacy of mannose on radio-sensitivity of human esophageal cancer cells. The apoptosis rates of tumor cells treated with mannose and/or radiation therapy was calculated by flow cytometry. Furthermore, we analyzed intracellular metabolites using liquid chromatography mass spectrometry to identify selective sugar metabolites. Results MPI expression was various in human esophageal cancer cells. KYSE70 cells was associated with the highest MPI expression whereas KYSE450 cells had the lowest MPI expression level. When administrated with 11.1 mM/L mannose, the same inhibitory effect was observed in both KYSE70 and KYSE450 cell lines. Moreover, the inhibitory effect was significant on KYSE450 cell lines with an increased mannose concentration. The application of 11.1 mM/L mannose could significantly enhance the radio-sensitivity of KYSE450 cell line; and tumor cell apoptosis rate was also increased. However, there was limited efficacy of mannose on the radio-sensitivity and apoptosis rate of KYSE70 cell line. Additionally, intracellular metabolites analyzation revealed that glycolysis could be disturbed by mannose when combined with radiation therapy in esophageal cancer cells. Conclusion In esophageal cancer cell lines with low MPI expression, the administration of mannose was associated with enhanced radio-sensitivity.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meng Wang ◽  
Yue Li ◽  
Yunyun Xiao ◽  
Muwen Yang ◽  
Jinxin Chen ◽  
...  

AbstractNicotine addiction and the occurrence of lymph node spread are two major significant factors associated with esophageal cancer’s poor prognosis; however, nicotine’s role in inducing lymphatic metastasis of esophageal cancer remains unclear. Here we show that OTU domain-containing protein 3 (OTUD3) is downregulated by nicotine and correlates with poor prognosis in heavy-smoking esophageal cancer patients. OTUD3 directly interacts with ZFP36 ring finger protein (ZFP36) and stabilizes it by inhibiting FBXW7-mediated K48-linked polyubiquitination. ZFP36 binds with the VEGF-C 3-‘UTR and recruits the RNA degrading complex to induce its rapid mRNA decay. Downregulation of OTUD3 and ZFP36 is essential for nicotine-induced VEGF-C production and lymphatic metastasis in esophageal cancer. This study establishes that the OTUD3/ZFP36/VEGF-C axis plays a vital role in nicotine addiction-induced lymphatic metastasis, suggesting that OTUD3 may serve as a prognostic marker, and induction of the VEGF-C mRNA decay might be a potential therapeutic strategy against human esophageal cancer.



2021 ◽  
Vol 11 ◽  
Author(s):  
Yunjing Zhang ◽  
Shiwen Wang ◽  
Yukun Chen ◽  
Junqian Zhang ◽  
Jing Yang ◽  
...  

Esophageal squamous cell carcinoma (ESCC) is a recalcitrant cancer. The Chinese herbal monomer fangchinoline (FCL) has been reported to have anti-tumor activity in several human cancer cell types. However, the therapeutic efficacy and underlying mechanism on ESCC remain to be elucidated. In the present study, for the first time, we demonstrated that FCL significantly suppressed the growth of ESCC both in vitro and in vivo. Mechanistic studies revealed that FCL-induced G1 phase cell-cycle arrest in ESCC which is dependent on p21 and p27. Moreover, we found that FCL coordinatively triggered Noxa-dependent intrinsic apoptosis and DR5-dependent extrinsic apoptosis by transactivating ATF4, which is a novel mechanism. Our findings elucidated the tumor-suppressive efficacy and mechanisms of FCL and demonstrated FCL is a potential anti-ESCC agent.



Author(s):  
Faiza Sajjada ◽  
Xu-Ying Liua ◽  
Yi-Jia Yanb ◽  
Xing-Ping Zhoua ◽  
Zhi-Long Chena

Background: Photodynamic therapy has been increasingly used to cope with the alarming problem of cancer. Porphyrins and its derivatives are widely used as potent photosensitizers (PS) for PDT. However, hydrophobicity of porphyrins poses a challenge for their use in clinics, while most of the carbon dots (CDs) are known for good biocompatibility, solubility, and pH sensitivity. Objective: To improve the properties/biocompatibility of the pyropheophorbide-α for PDT. Methods: Methods: PPa-CD conjugate was synthesized through covalent interaction using amide condensation. The structure of synthesized conjugate was confirmed by TEM, 1HNMR, and FTIR. The absorption and emission spectra were studied. In vitro, cytotoxicity of the conjugate was examined in the Human esophageal cancer cell line (Eca-109). Results: The results showed that the fluorescence of the drug was increased from its precursor. CD based conjugate could generate ROS as well as enhanced the biocompatibility by decreasing the cytotoxicity. The conjugated drug also showed pH sensitivity in different solutions. Conclusion: The dark toxicity, as well as hemocompatibility, were improved.



2021 ◽  
pp. canres.4160.2020
Author(s):  
Yue Li ◽  
Meng Wang ◽  
Muwen Yang ◽  
Yunyun Xiao ◽  
Yunting Jian ◽  
...  


2021 ◽  
Author(s):  
Libing Song ◽  
Meng Wang ◽  
Yue Li ◽  
Yunyun Xiao ◽  
Muwen Yang ◽  
...  

Abstract Nicotine addiction and the occurrence of lymph node spread are two major significant factors associated with esophageal cancer's poor prognosis; however, nicotine's role in inducing lymphatic metastasis of esophageal cancer remains unclear. Here we showed that OTU domain-containing protein 3 (OTUD3) was downregulated by nicotine and correlated with poor prognosis in heavy-smoking esophageal cancer patients. Nicotine-mediated OTUD3 downregulation promoted lymphatic metastasis by inducing substantial tumor-induced lymphangiogenesis. At the mechanistic level, OTUD3 directly interacted with ZFP36 ring finger protein (ZFP36) and stabilized it by inhibiting FBXW7-mediated K48-linked polyubiquitination. ZFP36 bound with the VEGF-C 3-'UTR and recruited the RNA degrading complex to induce its rapid mRNA decay. Thus, downregulation of OTUD3 and ZFP36 was essential for nicotine-induced VEGF-C production and lymphatic metastasis in esophageal cancer. This study establishes that the OTUD3/ZFP36/VEGF-C axis plays a vital role in nicotine addiction-induced lymphatic metastasis. It also suggests that OTUD3 may serve as a prognostic marker, and induction of the VEGF-C mRNA decay might be a potential therapeutic strategy against human esophageal cancer.



Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1065
Author(s):  
Joseph-Hang Leung ◽  
Hong-Thai Nguyen ◽  
Shih-Wei Feng ◽  
Sofya B. Artemkina ◽  
Vladimir E. Fedorov ◽  
...  

P-type and N-type photoelectrochemical (PEC) biosensors were established in the laboratory to discuss the correlation between characteristic substances and photoactive material properties through the photogenerated charge carrier transport mechanism. Four types of human esophageal cancer cells (ECCs) were analyzed without requiring additional bias voltage. Photoelectrical characteristics were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis reflectance spectroscopy, and photocurrent response analyses. Results showed that smaller photocurrent was measured in cases with advanced cancer stages. Glutathione (L-glutathione reduced, GSH) and Glutathione disulfide (GSSG) in cancer cells carry out redox reactions during carrier separation, which changes the photocurrent. The sensor can identify ECC stages with a certain level of photoelectrochemical response. The detection error can be optimized by adjusting the number of cells, and the detection time of about 5 min allowed repeated measurement.



2021 ◽  
Vol 11 ◽  
Author(s):  
Yongqing Heng ◽  
Yupei Liang ◽  
Junqian Zhang ◽  
Lihui Li ◽  
Wenjuan Zhang ◽  
...  

The neddylation pathway is overactivated in esophageal cancer. Our previous studies indicated that inactivation of neddylation by the NAE inhibitor induced apoptosis and autophagy in cancer cells. Camptothecin (CPT), a well-known anticancer agent, could induce apoptosis and autophagy in cancer cells. However, whether CPT could affect the neddylation pathway and the molecular mechanisms of CPT-induced autophagy in esophageal cancer remains elusive. We found that CPT induced apoptosis and autophagy in esophageal cancer. Mechanistically, CPT inhibited the activity of neddylation and induced the accumulation of p-IkBa to block NF-κB pathway. Furthermore, CPT induced the generation of ROS to modulate the AMPK/mTOR/ULK1 axis to finally promote protective autophagy. In our study, we elucidate a novel mechanism of the NF-κB/AMPK/mTOR/ULK1 pathway in CPT-induced protective autophagy in esophageal cancer cells, which provides a sound rationale for combinational anti-ESCC therapy with CPT and inhibition AMPK/ULK1 pathway.





Sign in / Sign up

Export Citation Format

Share Document