Analyzation of radiation absorption effect on magneto hydro dynamics Casson fluid flow with chemical reaction and diffusion-thermo effects

2021 ◽  
Author(s):  
K. Kranthi Kumar ◽  
CH. Baby Rani ◽  
A. V. Papa Rao
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bao Qin ◽  
Yexin Zhou ◽  
Zheng Zhong

PurposeA diffusion-reaction-deformation coupled model is employed and implemented as a user-defined element (UEL) subroutine in the commercial finite element software package ABAQUS.Design/methodology/approachChemical reaction and diffusion are treated as two distinct processes by introducing the extent of reaction and the diffusion concentration as two kinds of independent variables, for which the independent governing equations for chemical reaction and diffusion processes are obtained. Furthermore, an exponential form of chemical kinetics, instead of the linearly phenomenological relation, between the reaction rate and the chemical affinity is used to describe reaction process. As a result, complex chemical reaction can be simulated, no matter it is around or away from equilibrium.FindingsTwo numerical examples are presented, one for validation of the model and another for the modeling of the deflection of a plane caused by a chemical reaction.Originality/value1. Independent governing equations for diffusion and reaction processes are given. 2. An exponential relation between the reaction rate and its driving force is employed. 3. The UEL subroutine is used to implement the finite element procedure.


10.29007/g5p6 ◽  
2018 ◽  
Author(s):  
Harshad Patel ◽  
Hari Kataria

This article studies effect of thermal radiation, chemical reaction and parabolic motion on the unsteady MHD Casson fluid flow past an infinite vertical plate embedded with ramped wall temperature. The fluid is electrically conducting and passing through a porous medium. This phenomenon is modeled in the form of partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced and corresponding dimensionless equations are solved using the Laplace transform technique. Analytical expressions for velocity, temperature and concentration profiles are obtained. The features of the velocity, temperature and concentration are analyzed by plotting graphs and the physical aspects are studied for different parameters like the magnetic field parameter M, thermal radiation parameter R, chemical reaction parameter〖 R〗^', thermal Grashof number Gr, mass Grashof number Gm, Schmidt number Sc, Prandtl number Pr and time variable t. It is seen that velocity profiles decrease with increase in thermal radiation R and chemical reaction parameter〖 R〗^'.


Sign in / Sign up

Export Citation Format

Share Document