Effects of Thermal-Diffusion and Diffusion-Thermo on Oblique Stagnation Point Flow of Couple Stress Casson Fluid Over a Stretched Horizontal Riga Plate with Higher Order Chemical Reaction

2019 ◽  
Vol 8 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Rashid Mehmood ◽  
M. K. Nayak ◽  
Noreen Sher Akbar ◽  
O. D. Makinde
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sobia Akbar ◽  
Azad Hussain

Purpose. The flow of nonviscous Casson fluid is examined in this study over an oscillating surface. The model of the fluid flow has been inspected in the presence of oblique stagnation point flow. The scrutiny is subsumed for the Riga plate by considering the effects of magnetohydrodynamics. The Riga plate is considered as an electromagnetic lever which carries eternal magnets and a stretching line up of alternating electrodes coupled on a plane surface. We have considered nonboundary layer two-dimensional incompressible flow of the fluid. The fluid flow model is analyzed in the fixed frame of reference. Motivation. The motivation of achieving more suitable results has always been a quest of life for scientists; the capability of determining the boundary layer of flow on aircraft which either stays laminar or turns turbulent has encouraged the researcher to study compressible flow in depth. The compressible fluid with boundary layer flow has been utilized by numerous researchers to reduce skin friction and enhance thermal and convectional heat exchange. Design/Approach/Methodology. The attained partial differential equations will be critically inspected by using suitable similarity transformation to transform these flows thrived equations into higher nonlinear ordinary differential equations (ODE). Then, these equations of motion are intercepted by mathematical techniques such as the bvp4c method in Maple and Matlab. The graphical and tabular representation of different parameters is also given. Findings. The behavior of β and modified Hartmann number M increases by positively increasing the values of both parameters for F η , while ω decreases with increasing the values of ω for F η . The graph of β shows upward behavior for distinct values for both G η and G ′ η for velocity portray. Prandtl number and β for the temperature profile of θ η and θ 1 η goes downward with increasing parameters.


Author(s):  
A. Jasmine Benazir ◽  
R. Sivaraj ◽  
Oluwole Daniel Makinde

The present study focuses the effects of double dispersion, non-uniform heat source/sink and higher order chemical reaction on unsteady, free convective, MHD Casson fluid flow over a vertical cone and flat plate saturated with porous medium. The extensively validated and unconditionally stable numerical solutions are obtained for the governing equations of two dimensional boundary layer flow by using the finite difference scheme of Crank-Nicolson type. The behavior of velocity, temperature and concentration distributions for various controlling parameters of this problem are graphically illustrated and discussed in detail. The average skin friction, Nusselt number and Sherwood number for sundry parameters are presented in tables. Results indicate that an increase in Casson fluid parameter is found to decelerate fluid flow by increasing the plastic dynamic viscosity whereas it enhances the shear stress in the flow regime. The temperature-dependent heat source/sink plays a vital role on controlling the heat transfer however the surface-dependent heat source/sink also has notable influence on the heat transfer characteristics. It is to be noted that higher order chemical reaction has the tendency to dilute the influence of chemical reaction parameter on the species concentration.


Author(s):  
Latif Ahmad ◽  
Saleem Javed ◽  
Muhammad Ijaz Khan ◽  
M. Riaz Khan ◽  
Essam Roshdy El-Zahar ◽  
...  

Particular non-axisymmetric Homann stagnation point flow of Walter’s B fluid over a vertical cylindrical disk is considered in this work. Important physical aspects of newly transient state problem are described by incorporating the effects of magnetic field and mixed convection. Additionally, the temperature and solute concentration are expressed with new parameters in the form of Brownian motion, thermophoretic force, thermal radiation, and 1st order chemical reaction. Furthermore, the problem is modeled with non-linear PDE’s, and which are further converted into ODE’s along with the proposed geometric conditions. Exploration of new physical impacts are described in the form of velocity, temperature, concentration, and displacement thicknesses by applying numerical scheme. However, the momentum equation subjected to the insufficient boundary conditions converting us to apply perturbation technique to reduce the order of ODE accordingly. It is conducted that displacement thicknesses [Formula: see text] and [Formula: see text] tends to its asymptotic value, as [Formula: see text] On the other hand, the displacement thickness [Formula: see text] is found in reverse trends, for the same escalating values of viscoelastic parameter. The skin friction [Formula: see text] variation against viscoelastic parameter is noticed with uplifting trend when [Formula: see text] and vice versa, for [Formula: see text] Outcomes for the Nusselt and Sherwood numbers and rate of heat and mass transfer have been obtained and discussed for parametric variations of the buoyancy parameter ξ, magnetic parameter M, temperature ratio parameter, Brownian motion parameter [Formula: see text], thermophoresis parameter [Formula: see text] and 1st order chemical reaction Rc. Also, shows relative growth for the momentum and concentration profiles.


Sign in / Sign up

Export Citation Format

Share Document