A puzzling gamma-ray survey of the Sun

Physics Today ◽  
2018 ◽  
Vol 71 (10) ◽  
pp. 21-21
Author(s):  
Andrew Grant
Keyword(s):  
1965 ◽  
Vol 3 (2) ◽  
pp. 319 ◽  
Author(s):  
Joseph F. Dolan ◽  
G. G. Fazio
Keyword(s):  

Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


1990 ◽  
Vol 142 ◽  
pp. 457-465 ◽  
Author(s):  
M. R. Kundu ◽  
S. M. White

The emission of solar flares at millimeter wavelengths is of great interest both in its own right and because it is generated by the energetic electrons which also emit gamma rays. Since high-resolution imaging at gamma-ray energies is not presently possible, millimeter observations can act as a substitute. Except for that class of flares known as gamma-ray flares the millimetric emission is optically thin. It can be used as a powerful diagnostic of the energy distribution of electrons in solar flares and its evolution, and of the magnetic field. We have carried out high-spatial-resolution millimeter observations of solar flares this year using the Berkeley-Illinois-Maryland Array (BIMA), and report on the preliminary results in this paper (Kundu et al 1990; White et al 1990). We also report some recent results obtained from multifrequency observations using the VLA (White et al 1990).


2020 ◽  
Vol 102 (2) ◽  
Author(s):  
M. N. Mazziotta ◽  
F. Loparco ◽  
D. Serini ◽  
A. Cuoco ◽  
P. De La Torre Luque ◽  
...  

2005 ◽  
Vol 192 ◽  
pp. 381-390
Author(s):  
Ferdinando Patat

Thus, the observation of gamma-ray line emission from a young supernova seems very promising in the near future. The observation, or even a null observation at a low threshold, will give significance in the fields of nuclear astrophysics and supernova theory. The scientific importance of a positive measurement would be analogous with and comparable to the importance of successful detection of neutrinos from the Sun.Clayton, Colgate, and Fishman [2].


1998 ◽  
Vol 11 (2) ◽  
pp. 755-758
Author(s):  
M. Yoshimori ◽  
N. Saita ◽  
A. Shiozawa

In the last solar maximum, gamma-rays associated with solar flares were observed with GRANAT, GAMMA-1, CGRO and YOHKOH. The gamma-ray energies ranged from 100 keV to a few GeV. We obtained several new findings of gamma-ray emission on the Sun: (1) Gamma-ray production in the corona, (2) GeV gamma-ray production in very long duration flares, (3) Electron-rich flares, (4) Gamma-ray lines and solar atmospheric abundances and (5) Possible location of gamma-ray emission. We present the observations of these new findings and discuss high energy phenomena relating to particle acceleration and gamma-ray production during solar flares.


2021 ◽  
Author(s):  
Francesco Loparco ◽  
Davide Serini ◽  
Mario Nicola Mazziotta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document