Great Barrier Reef

Author(s):  
Mike Kingsford ◽  
Ove Hoegh-Guldberg

The Great Barrier Reef Marine Park is 344 400 square kilometres in size and is home to one of the most diverse ecosystems in the world. This comprehensive guide describes the organisms and ecosystems of the Great Barrier Reef, as well as the biological, chemical and physical processes that influence them. Contemporary pressing issues such as climate change, coral bleaching, coral disease and the challenges of coral reef fisheries are also discussed. In addition,the book includes a field guide that will help people to identify the common animals and plants on the reef, then to delve into the book to learn more about the roles the biota play. Beautifully illustrated and with contributions from 33 international experts, The Great Barrier Reef is a must-read for the interested reef tourist, student, researcher and environmental manager. While it has an Australian focus, it can equally be used as a baseline text for most Indo-Pacific coral reefs. Winner of a Whitley Certificate of Commendation for 2009.

2019 ◽  

The iconic and beautiful Great Barrier Reef Marine Park is home to one of the most diverse ecosystems in the world. With contributions from international experts, this timely and fully updated second edition of The Great Barrier Reef describes the animals, plants and other organisms of the reef, as well as the biological, chemical and physical processes that influence them. It contains new chapters on shelf slopes and fisheries and addresses pressing issues such as climate change, ocean acidification, coral bleaching and disease, and invasive species. The Great Barrier Reef is a must-read for the interested reef tourist, student, researcher and environmental manager. While it has an Australian focus, it can equally be used as a reference text for most Indo-Pacific coral reefs.


1989 ◽  
Vol 21 (2) ◽  
pp. 31-38 ◽  
Author(s):  
Simon Woodley

The Great Barrier Reef is the largest coral reef system in the world. It is recognised and appreciated worldwide as a unique environment and for this reason has been inscribed on the World Heritage List. The Reef is economically-important to Queensland and Australia, supporting substantial tourism and fishing industries. Management of the Great Barrier Reef to ensure conservation of its natural qualities in perpetuity is achieved through the establishment of the Great Barrier Reef Marine Park. The maintenance of water quality to protect the reef and the industries which depend on it is becoming an increasingly important management issue requiring better knowledge and possibly new standards of treatment and discharge.


2017 ◽  
Vol 33 (3) ◽  
pp. 160-170 ◽  
Author(s):  
Hilary Whitehouse ◽  
Marie Taylor ◽  
Neus (Snowy) Evans ◽  
Tanya Doyle ◽  
Juanita Sellwood ◽  
...  

AbstractThis is a researched account of an offshore coral reef education partnership formed during a time of rapid environmental change (the coral bleaching events in the years 2015 to 2017). The aim of the partnership is to encourage a learning connection with Sea Country. Framed as civic environmentalism, this article explores the dimensions of practice between a reef tourism provider, local schools, a local university, and local Indigenous rangers that enables primary, secondary and university students, rangers, and educators to travel together on day trips to the outer Great Barrier Reef and islands and have immersive and sharing educational experiences. Offshore environmental education and higher quality marine education is increasingly important in the Anthropocene, when Australian reefs are subject to the pressures of climate change and other impacts other impacts that diminish their resilience.


2015 ◽  
Vol 72 (8) ◽  
pp. 2506-2511 ◽  
Author(s):  
Cigdem Beyan ◽  
Bastian J. Boom ◽  
Jolanda M. P. Liefhebber ◽  
Kwang-Tsao Shao ◽  
Robert B. Fisher

Abstract Recent research on the relationship between coral reef water temperature and fish swimming activity has stated that swimming speed is inversely correlated with temperature above a species' optimum temperature (Johansen, J. L., and Jones, G. P. 2011. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Global Change Biology, 17: 2971–2979; Johansen, J. L., Messmer,V., Coker, D. J., Hoey, A. S., and Pratchett, M. S. 2014. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish. Global Change Biology, 20: 1067–1074). For tropical coral reefs, one anticipated consequence of global warming is an increase of ≥3°C in average water temperature in addition to greater thermal fluctuations [IPCC (Intergovernmental Panel on Climate Change). 2007. Summary for policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working, Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by S. Solomon, D. Qin, and M. Manning et al. Cambridge University Press, Cambridge, UK; Lough, J. 2007. Climate and climate change on the Great Barrier Reef. In Climate Change and the Great Barrier Reef. Ed. by J. Johnson and P. A. Marshall, pp. 15–50. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, Townsville, Qld, Australia; Johansen and Jones, 2011]. Evaluating the behaviour of coral reef associated fish species at different temperatures can help to assess their sensitivity to climate change. In this study, the speed of freely swimming fish in a natural setting is investigated as a function of seasonal changes in water temperature, as contrasted with systematic temperature increases in a fish tank. We show that Dascyllus reticulatus swim faster as a function of increased water temperature over the range 20.9–30.3°C. The experiments were carried out using ∼3.6 million fish trajectories observed at the Kenting National Park in Taiwan. Fish speed was computed by detecting and tracking the fish through consecutive video frames, then converting image speeds to scene speeds. Temperatures were grouped into 10 intervals. The data reveal an ∼2 mm s−1 increase in average speed per additional temperature degree over the range of 20.9–30.3°C. The Mann–Kendall test using the mean and median speed for each interval revealed that there is a speed increase trend as temperature increases at the 0.05 significance level, rather than a random increase. Our results complement previous studies that investigated the effect of temperature on the swimming performance of different fish species in the laboratory (Johansen and Jones, 2011; Myrick, C. A. and Cech, J. J. 2000. Swimming performance of four California stream fishes: temperature effects. Environmental Biology of Fishes, 58: 289–295; Ojanguren, A. F. and Braña, F. 2000. Thermal dependence of swimming endurance in juvenile brown trout. Journal of Fish Biology, 56: 1342–1347; Lough 2007; Johansen et al., 2014).


2016 ◽  
Vol 25 (24) ◽  
pp. 6039-6054 ◽  
Author(s):  
David H. Williamson ◽  
Hugo B. Harrison ◽  
Glenn R. Almany ◽  
Michael L. Berumen ◽  
Michael Bode ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Gal Eyal ◽  
Jack H. Laverick ◽  
Pim Bongaerts ◽  
Oren Levy ◽  
John M. Pandolfi

Mesophotic coral ecosystems (MCEs) are characterized by the presence of photosynthetically active organisms such as corals and algae, and associated communities at depths ranging from 30 to 150 m in tropical and subtropical regions. Due to the increased awareness of the potential importance of these reefs as an integral part of coral reef ecosystems (i.e., deep reef refuge, specialized biodiversity, transition zone between shallow and deep-sea environments, and recreational and intrinsic values), interest from the scientific community has grown around the world over the last two decades. Several nations have already made management declarations and started to extend marine protected areas and fishery management to MCEs. The estimated area of Australian MCEs is likely equivalent to that of shallow reef ecosystems down to 30 m; however, Australian MCEs attract limited research effort compared to other major coral reef regions around the world. In this perspective, we briefly explore the reasons for this scarcity of research on mesophotic ecosystems of the Great Barrier Reef (GBR) of Australia (e.g., strict diving regulations, new researchers’ involvement, and logistics and cost). At present, research efforts on the mesophotic ecosystems of the GBR are in decline and if this trajectory is maintained, the global disparity in knowledge between MCEs near Australia and those from the other main coral reef regions worldwide will sharpen deeply. We call for action from the research community, grant agencies, and decision-makers toward a wider understanding of these important ecosystems in Australia.


Sign in / Sign up

Export Citation Format

Share Document