Assessing climate change impacts on primary production and calcification on a coral reef — a pilot study of ocean acidification processes on the Great Barrier Reef

2009 ◽  
Vol 6 (46) ◽  
pp. 462014
Author(s):  
Lida Teneva ◽  
R B Dunbar ◽  
D A Muccarione ◽  
M Long ◽  
C McDonald ◽  
...  
Author(s):  
Mike Kingsford ◽  
Ove Hoegh-Guldberg

The Great Barrier Reef Marine Park is 344 400 square kilometres in size and is home to one of the most diverse ecosystems in the world. This comprehensive guide describes the organisms and ecosystems of the Great Barrier Reef, as well as the biological, chemical and physical processes that influence them. Contemporary pressing issues such as climate change, coral bleaching, coral disease and the challenges of coral reef fisheries are also discussed. In addition,the book includes a field guide that will help people to identify the common animals and plants on the reef, then to delve into the book to learn more about the roles the biota play. Beautifully illustrated and with contributions from 33 international experts, The Great Barrier Reef is a must-read for the interested reef tourist, student, researcher and environmental manager. While it has an Australian focus, it can equally be used as a baseline text for most Indo-Pacific coral reefs. Winner of a Whitley Certificate of Commendation for 2009.


2017 ◽  
Vol 33 (3) ◽  
pp. 160-170 ◽  
Author(s):  
Hilary Whitehouse ◽  
Marie Taylor ◽  
Neus (Snowy) Evans ◽  
Tanya Doyle ◽  
Juanita Sellwood ◽  
...  

AbstractThis is a researched account of an offshore coral reef education partnership formed during a time of rapid environmental change (the coral bleaching events in the years 2015 to 2017). The aim of the partnership is to encourage a learning connection with Sea Country. Framed as civic environmentalism, this article explores the dimensions of practice between a reef tourism provider, local schools, a local university, and local Indigenous rangers that enables primary, secondary and university students, rangers, and educators to travel together on day trips to the outer Great Barrier Reef and islands and have immersive and sharing educational experiences. Offshore environmental education and higher quality marine education is increasingly important in the Anthropocene, when Australian reefs are subject to the pressures of climate change and other impacts other impacts that diminish their resilience.


Human Ecology ◽  
2013 ◽  
Vol 41 (6) ◽  
pp. 841-857 ◽  
Author(s):  
Louisa S. Evans ◽  
Christina C. Hicks ◽  
Pedro Fidelman ◽  
Renae C. Tobin ◽  
Allison L. Perry

2015 ◽  
Vol 72 (8) ◽  
pp. 2506-2511 ◽  
Author(s):  
Cigdem Beyan ◽  
Bastian J. Boom ◽  
Jolanda M. P. Liefhebber ◽  
Kwang-Tsao Shao ◽  
Robert B. Fisher

Abstract Recent research on the relationship between coral reef water temperature and fish swimming activity has stated that swimming speed is inversely correlated with temperature above a species' optimum temperature (Johansen, J. L., and Jones, G. P. 2011. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Global Change Biology, 17: 2971–2979; Johansen, J. L., Messmer,V., Coker, D. J., Hoey, A. S., and Pratchett, M. S. 2014. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish. Global Change Biology, 20: 1067–1074). For tropical coral reefs, one anticipated consequence of global warming is an increase of ≥3°C in average water temperature in addition to greater thermal fluctuations [IPCC (Intergovernmental Panel on Climate Change). 2007. Summary for policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working, Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by S. Solomon, D. Qin, and M. Manning et al. Cambridge University Press, Cambridge, UK; Lough, J. 2007. Climate and climate change on the Great Barrier Reef. In Climate Change and the Great Barrier Reef. Ed. by J. Johnson and P. A. Marshall, pp. 15–50. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, Townsville, Qld, Australia; Johansen and Jones, 2011]. Evaluating the behaviour of coral reef associated fish species at different temperatures can help to assess their sensitivity to climate change. In this study, the speed of freely swimming fish in a natural setting is investigated as a function of seasonal changes in water temperature, as contrasted with systematic temperature increases in a fish tank. We show that Dascyllus reticulatus swim faster as a function of increased water temperature over the range 20.9–30.3°C. The experiments were carried out using ∼3.6 million fish trajectories observed at the Kenting National Park in Taiwan. Fish speed was computed by detecting and tracking the fish through consecutive video frames, then converting image speeds to scene speeds. Temperatures were grouped into 10 intervals. The data reveal an ∼2 mm s−1 increase in average speed per additional temperature degree over the range of 20.9–30.3°C. The Mann–Kendall test using the mean and median speed for each interval revealed that there is a speed increase trend as temperature increases at the 0.05 significance level, rather than a random increase. Our results complement previous studies that investigated the effect of temperature on the swimming performance of different fish species in the laboratory (Johansen and Jones, 2011; Myrick, C. A. and Cech, J. J. 2000. Swimming performance of four California stream fishes: temperature effects. Environmental Biology of Fishes, 58: 289–295; Ojanguren, A. F. and Braña, F. 2000. Thermal dependence of swimming endurance in juvenile brown trout. Journal of Fish Biology, 56: 1342–1347; Lough 2007; Johansen et al., 2014).


1989 ◽  
Vol 21 (2) ◽  
pp. 31-38 ◽  
Author(s):  
Simon Woodley

The Great Barrier Reef is the largest coral reef system in the world. It is recognised and appreciated worldwide as a unique environment and for this reason has been inscribed on the World Heritage List. The Reef is economically-important to Queensland and Australia, supporting substantial tourism and fishing industries. Management of the Great Barrier Reef to ensure conservation of its natural qualities in perpetuity is achieved through the establishment of the Great Barrier Reef Marine Park. The maintenance of water quality to protect the reef and the industries which depend on it is becoming an increasingly important management issue requiring better knowledge and possibly new standards of treatment and discharge.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 251
Author(s):  
Adi Zweifler (Zvifler) ◽  
Michael O’Leary ◽  
Kyle Morgan ◽  
Nicola K. Browne

Increasing evidence suggests that coral reefs exposed to elevated turbidity may be more resilient to climate change impacts and serve as an important conservation hotspot. However, logistical difficulties in studying turbid environments have led to poor representation of these reef types within the scientific literature, with studies using different methods and definitions to characterize turbid reefs. Here we review the geological origins and growth histories of turbid reefs from the Holocene (past), their current ecological and environmental states (present), and their potential responses and resilience to increasing local and global pressures (future). We classify turbid reefs using new descriptors based on their turbidity regime (persistent, fluctuating, transitional) and sources of sediment input (natural versus anthropogenic). Further, by comparing the composition, function and resilience of two of the most studied turbid reefs, Paluma Shoals Reef Complex, Australia (natural turbidity) and Singapore reefs (anthropogenic turbidity), we found them to be two distinct types of turbid reefs with different conservation status. As the geographic range of turbid reefs is expected to increase due to local and global stressors, improving our understanding of their responses to environmental change will be central to global coral reef conservation efforts.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Jeremy Goldberg ◽  
Nadine Marshall ◽  
Alastair Birtles ◽  
Peter Case ◽  
Erin Bohensky ◽  
...  

2021 ◽  
pp. 64-89
Author(s):  
Mark Maslin

‘Climate change impacts’ assesses the potential impacts of climate change and how these alter in scale and intensity with increasing warming by breaking down the potential impacts into sectors: extreme heat and droughts, storms and floods, agriculture, ocean acidification, biodiversity, and human health. Policy-makers should identify what dangerous climate change is. We need a realistic target concerning the degree of climate change with which we can cope. Fortunately, the societal coping range is flexible and can change with the shifting baseline and the more frequent extreme events—as long as there is strong climate science to provide clear guidance on what sort of changes are going to occur.


Sign in / Sign up

Export Citation Format

Share Document