UNDERSTANDING SOURCE, DISTRIBUTION AND PRESERVATION OF AUSTRALIAN NATURAL GAS: A GEOCHEMICAL PERSPECTIVE

2001 ◽  
Vol 41 (1) ◽  
pp. 523 ◽  
Author(s):  
C.J. Boreham ◽  
J.M. Hope ◽  
B. Hartung-Kagi

Natural gases from all of Australia’s major gas provinces in the Adavale, Amadeus, Bass, Bonaparte, Bowen/ Surat, Browse, Canning, Carnarvon, Cooper/Eromanga, Duntroon, Gippsland, Otway and Perth basins have been examined using molecular and carbon isotopic compositions in order to define their source, maturity and secondary alteration processes.The molecular compositions of the gaseous hydrocarbons range from highly wet to extremely dry. On average, reservoired gases predominantly derived from land plants are slightly wetter than those derived from marine sources. The non-hydrocarbon gases CO2 and N2 were sourced from both inorganic and organic materials. A mantle and/or igneous origin is likely in the majority of gases with CO2 contents >5%. For gases with lower CO2 contents, an additional organic input, associated with hydrocarbon generation, is recognised where δ13C CO2 is A strong inter-dependency between source and maturity has been recognised from the carbon isotopic composition of individual gaseous hydrocarbons. This relationship has highlighted some shortcomings of common graphical tools for interpretation of carbon isotopic data. The combination of the carbon isotopic composition of gaseous hydrocarbons and the low molecular weight nalkanes in the accompanying oil allows our knowledge of oil-source correlations and oil families to be used to correlate gases with their sources. This approach has identified source rocks for gas ranging in age from the Ordovician in the Amadeus Basin to Late Cretaceous- Early Tertiary sources in the Bass and Gippsland basins. The carbon isotopic composition of organic matter, approximated using the δ13C of iso-butane, shows a progressive enrichment in 13C with decreasing source age, together with marine source rocks for gas being isotopically lighter than those from land plant sources. The Permian was a time when organic matter was enriched in 13C and isotopically uniform on a regional scale.Secondary, in-reservoir alteration has played a major role in the modification of Australian gas accumulations. Thus, biodegradation, prominent in the Bowen/Surat, Browse, Carnarvon and Gippsland basins, is found in both hydrocarbon and non-hydrocarbon gases. This is recognised by an increase in gas dryness, elevated isoalkane to n-alkane ratio, differential increase in δ13C of the individual wet gas components, a decrease in δ13C of methane and a reduction in CO2 content concomitant with enrichment in 13C. Evidence of water-washing has been identified in accumulations in the Bonaparte and Cooper/Eromanga basins, resulting in an increase in the wet gas content. Seal integrity is also a major risk for the preservation of natural gas accumulations, although its effect on gas composition is only evident in extreme cases, such as the Amadeus Basin, where preferential leakage of methane in the Palm Valley field has resulted in the residual methane becoming enriched in 13C.The greater mobility of gas within subsurface rocks can have a detrimental effect on oil composition whereby gas-stripping of light hydrocarbons is common amongst Australian oil accumulations. Alternatively, the availability of gas, derived from a source rock common to or different from oil, was likely to have been a prime factor controlling the regional distribution of oil, whereby mixing of both results in increased oil mobility and can lead to a greater access to the number and types of traps in the subsurface.

2021 ◽  
Vol 64 (3) ◽  
pp. 470-493 ◽  
Author(s):  
Jianping Chen ◽  
Xulong Wang ◽  
Jianfa Chen ◽  
Yunyan Ni ◽  
Baoli Xiang ◽  
...  

1992 ◽  
Vol 6 ◽  
pp. 163-163
Author(s):  
Fabien Kenig ◽  
Brian Popp ◽  
Roger Summons

To understand the processes controlling production, accumulation, and preservation of organic matter in the Lower Oxford Clay (LOC), we determined the hydrogen index (HI), the oxygen index (OI), the Tmax (from Rock-Eval), the content of total organic carbon (TOC), total carbon and total sulfur, and the carbon isotopic composition of bulk organic matter from 160 samples collected from 6 different quarries and one continuous core. With concentrations of TOC varying between 0.5% and 16.6%, the LOC is an organic-rich shale. For samples dominated by organic matter of phytoplanktonic origin, the hydrogen and oxygen indices and the Tmax (~418°) indicate low levels of maturity, and, thus, the shallow burial of the LOC through geologic time.Two main sources of organic matter can be distinguished: a major phytoplanktonic source with high HI and low OI and a minor terrestrial source with low HI and high OI. A third group, represented by samples with low HI and low OI, consists mainly of altered materials from the Middle Oxford Clay and the LOC. Selection of samples for chemical analysis was based on the macrofaunal assemblages defined by Duff (1975). These various biofacies are characterized by specific organic geochemical features indicating the relationship between conditions affecting faunal assemblages and those controlling accumulation and preservation of organic matter. For example, Duff's ‘deposit feeder shales', which are dominated by epifaunal bivalves and are depleted in infaunal organisms, exhibit the highest concentration and best preservation of marine organic matter, with an average TOC of 6.8% for 56 samples analyzed. The preservation of such organic matter requires a dysaerobic water column and a high sedimentation rate.Carbon isotopic compositions within the ‘deposit feeder shale’ biofacies (−27.6 to −23.2±) appear to have been controlled by the intensity of primary productivity. The highest-TOC, marine-dominated, 13C-rich samples reflect photosynthetic drawdown of dissolved-CO2 level, and, thus, originated in highly productive environments. On the other hand, variations in the carbon isotopic composition of organic matter in shell beds (−27.5 to −26±) probably reflect heterotrophic reworking of the organic matter, winnowing of the sediments, and mixing with a source of organic matter enriched in 13C, such as wood (δ13C from −25 to −23±). Such mixing phenomena may also explain the high variability of the carbon isotopic compositions of TOC-depleted and altered samples from the Middle and Upper Oxford Clay.The environment of deposition of the LOC would be characterized by the alternation of two major conditions: 1) periods of high productivity, dysoxic water column and high sedimentation rate leading to the development of organic-rich shales dominated by phytoplanktonic organic matter, and 2) periods of low productivity, oxic water column and high current activity implying winnowing and alteration of organic matter, and leading to the formation of shell beds where marine and terrestrial organic matter are mixed.


2016 ◽  
Vol 36 (1) ◽  
pp. 102-111
Author(s):  
Jin-ning Peng ◽  
Dong-yan Wang ◽  
Guang-xiang Liu ◽  
Min Zhang ◽  
Feng-li Li

Sign in / Sign up

Export Citation Format

Share Document