THE JOHN BROOKES GAS DISCOVERY—AN EVOLVING STORY

2002 ◽  
Vol 42 (1) ◽  
pp. 443
Author(s):  
K. Auld ◽  
B. Thomas ◽  
J. Goodall ◽  
J. Benson

John Brookes–1 was drilled as part of a work commitment for the WA-214-P Joint Venture in 1998 and discovered an 85 m gross dry gas column. The objective of the well was to test a structural closure at the base of the Muderong Shale regional seal on the Tryal Rocks anticline, up-dip from Tryal Rocks–1, drilled in 1970. Tryal Rocks–1, the 31st offshore well to be drilled within the Carnarvon Basin, WA, was initially considered a dry hole. However, a review of the well data in 1997–98 suggested that Tryal Rocks–1 might contain a hydrocarbon column. The mapping of the structure using initially 2D seismic data acquired post Tryal Rocks–1, then 3D data, indicated that Tryal Rocks–1 was drilled within closure, but off crest, and that significant closure existed up-dip. The John Brookes–1 location was selected to test this updip potential. The John Brookes–1 discovery confirmed the validity of the structural mapping. However, the unexpected nature of the reservoir, interpreted as a well developed turbiditic channel of Birdrong Sandstone age, changed the emphasis from purely structural to a play with structural/stratigraphic potential. An amalgamated turbidite complex model was invoked which infers that the John Brookes–1 reservoir represents a confined channel system cut into the underlying substrate. This model explains the results to date, with the John Brookes–1 gas reservoir being in direct continuity with the sandstones at Tryal Rocks–1. A review of the 3D seismic data across the field and seismic modelling support the stratigraphic model developed from the palynological interpretation.

1995 ◽  
Vol 35 (1) ◽  
pp. 44
Author(s):  
I. F. Young ◽  
T.M. Schmedje ◽  
W.F. Muir

The Elang-1 oil discovery in the Timor Gap Zone of Cooperation (ZOC) has established a new oil province in the eastern Timor Sea. The discovery well, completed in February 1994, recorded a flow of 5,800 BOPD (5,013 STBOPD) from marine sandstone of the Late Jurassic Montara beds. The oil is a light (56° API), undersaturated oil with a GOR of approximately 550 SCF/STB. Elang-1 was the first well drilled by the ZOCA 91-12 Joint Venture and only the fifth well in the ZOC since exploration of this frontier area resumed in 1992.The Elang Prospect, initially mapped by Petroz in the late 1970s on the basis of regional seismic data, was detailed by the 1992 Walet Seismic Survey. The prospect is the main crestal culmination on the Elang Trend, a prominent structural high to the north of the Flamingo High that was established during continental break-up in the Late Jurassic. The Elang Trend is bounded to the south by a series of en-echelon normal faults and connecting relay ramps and comprises a number of horst and tilted fault blocks.Elang-1 tested a near crestal culmination on the Elang Prospect and intersected a 76.5 m gross oil column below 3,006.5 m RT. At time of drilling this oil column was the thickest that had been encountered by any well in the Northern Bonaparte Basin. Good quality reservoir sandstone in six discrete bodies were intersected within the Montara beds. Core-measured porosity and permeability range up to 17 per cent and 2.2 Darcies within the oil column.Subsequent to the Elang discovery, the Joint Venture recorded a 402 km2 3D survey over the Elang Trend. Elang-2, an appraisal well spudded in September 1994 prior to receipt of the 3D data, established the lateral continuity of the Montara beds reservoirs. Flow rates of 6,080 BOPD (5,300 STBOPD) and 7,500 BOPD (5,970 STBOPD) from separate intervals have confirmed that high deliverabilities can be expected from individual sandstones. Further appraisal drilling is planned in the first half of 1995. This is expected to lead to commercial development of the field.


1983 ◽  
Vol 23 (1) ◽  
pp. 170
Author(s):  
A. R. Limbert ◽  
P. N. Glenton ◽  
J. Volaric

The Esso/Hematite Yellowtall oil discovery is located about 80 km offshore in the Gippsland Basin. It is a small accumulation situated between the Mackerel and Kingfish oilfields. The oil is contained in Paleocene Latrobe Group sandstones, and sealed by the calcareous shales and siltstones of the Oligocene to Miocene Lakes Entrance Formation. Structural movement and erosion have combined to produce a low relief closure on the unconformity surface at the top of the Latrobe Group.The discovery well, Yellowtail-1, was the culmination of an exploration programme initiated during the early 1970's. The early work involved the recording and interpretation of conventional seismic data and resulted in the drilling of Opah- 1 in 1977. Opah-1 failed to intersect reservoir- quality sediments within the interpreted limits of closure although oil indications were encountered in a non-net interval immediately below the top of the Latrobe Group. In 1980 the South Mackerel 3D seismic survey was recorded. The interpretation of these 3D data in conjunction with the existing well control resulted in the drilling of Yellowtail-1 and subsequently led to the drilling of Yellowtail-2.In spite of the intensive exploration to which this small feature has been subjected, the potential for its development remains uncertain. Technical factors which affect the viability of a Yellowtail development are:The low relief of the closure makes the reservoir volume highly sensitive to depth conversion of the seismic data.The complicated velocity field makes precise depth conversion difficult.The thin oil column reduces oil recovery efficiency.The detailed pattern of erosion at the top of the Latrobe Group may be beyond the resolution capability of 3D seismic data.The 3D seismic data may not be capable of defining the distribution of the non-net intervals within the trap.The large anticlinal closures and topographic highs in the Gippsland Basin have been drilled, and the prospects that remain are generally small or high risk. Such exploration demands higher technology in the exploration stage and more wells to define the discoveries, and has no guarantee of success. The Yellowtail discovery is an illustration of one such prospect that the Esso/Hematite joint venture is evaluating.


1995 ◽  
Vol 42 ◽  
pp. 34-46
Author(s):  
Kim Gunn Maver

Zechstein carbonates in Southern Jutland, Denmark, have been explored by 10 wells since 1952, and a total of more than 2000 km of 2D seismic data has been acquired by various contractors. Seismic modelling, based on all the well data, is used as an aid to predict the lateral distribution of porous Zechstein carbonate intervals from the seismic data. ID seismic modelling is used to define the maximum number of intervals detected by the seismic sections at well locations. The ID seismic modelling results are also used to derive 2D acoustic impedance models and corresponding synthetic seismograms. The seismic modelling results illustrate a number of diagnostic reflection patterns associated with the porous carbonate intervals. The predicted distribution of porous carbonate intervals is, however, found to be uncertain, as thickness and porosity variations of each interval cannot be distinguished. Furthermore, thin porous carbonate intervals are not detected by the seismic sections, and the seismic reflection patterns indicating the presence of porous carbonate intervals can be associated with other lithologies. Porous Ca-la, Ca-lb, Ca-2 and Ca-3 carbonate intervals are found to be detected by the seismic sections only in the Zechstein platform area, and only the porous Ca-2 carbonate interval can be mapped


2019 ◽  
Vol 496 (1) ◽  
pp. 253-279 ◽  
Author(s):  
Johnathon L. Osmond ◽  
Timothy A. Meckel

AbstractAn understanding of trap and fault seal quality is critical for assessing hydrocarbon prospectivity. To achieve this, modern analytical techniques leverage well data and conventional industry-standard 3D seismic data to evaluate the trap, and any faults displacing the reservoir and top seal intervals. Above all, geological interpretation provides the framework of trap and fault seal analyses, but can be hindered by the data resolution, quality and acquisition style of the conventional seismic data. Furthermore, limiting the analysis to only the petroleum system at depth may lead to erroneous perceptions because interpreting overburden features, such as shallow faults or gas chimneys, can provide valuable observations with respect to container performance, and can to help validate trap and fault seal predictions. A supplement to conventional 3D data are high-resolution 3D seismic (HR3D) data, which provide detailed images of the overburden geology. This study utilizes an HR3D seismic volume in the San Luis Pass area of the Texas inner shelf, where shallow fault tips and a sizeable gas chimney are interpreted over an unsuccessful hydrocarbon prospect. Static post-drill fault seal and trap analyses suggest that the primary fault displacing the structural closure could have withheld columns of gas c. 100 m high, but disagree with our HR3D seismic interpretations and dry-well analyses. From our results, we hypothesize that tertiary gas migration through fault conduits reduced the hydrocarbon column in the prospective Early Miocene reservoir, and may have resulted from continued movement along the intersecting faults. Overall, this study reinforces the importance of understanding the overburden geology and geohistory of faulted prospects, and demonstrates the utility of pre-drill HR3D acquisition when conducting trap and fault seal analyses.


Author(s):  
Nina Skaarup ◽  
James A. Chalmers

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Skaarup, N., & Chalmers, J. A. (1998). A possible new hydrocarbon play, offshore central West Greenland. Geology of Greenland Survey Bulletin, 180, 28-30. https://doi.org/10.34194/ggub.v180.5082 _______________ The discovery of extensive seeps of crude oil onshore central West Greenland (Christiansen et al. 1992, 1994, 1995, 1996, 1997, 1998, this volume; Christiansen 1993) means that the central West Greenland area is now prospective for hydrocarbons in its own right. Analysis of the oils (Bojesen-Koefoed et al. in press) shows that their source rocks are probably nearby and, because the oils are found within the Lower Tertiary basalts, the source rocks must be below the basalts. It is therefore possible that in the offshore area oil could have migrated through the basalts and be trapped in overlying sediments. In the offshore area to the west of Disko and Nuussuaq (Fig. 1), Whittaker (1995, 1996) interpreted a few multichannel seismic lines acquired in 1990, together with some seismic data acquired by industry in the 1970s. He described a number of large rotated fault-blocks containing structural closures at top basalt level that could indicate leads capable of trapping hydrocarbons. In order to investigate Whittaker’s (1995, 1996) interpretation, in 1995 the Geological Survey of Greenland acquired 1960 km new multichannel seismic data (Fig. 1) using funds provided by the Government of Greenland, Minerals Office (now Bureau of Minerals and Petroleum) and the Danish State through the Mineral Resources Administration for Greenland. The data were acquired using the Danish Naval vessel Thetis which had been adapted to accommodate seismic equipment. The data acquired in 1995 have been integrated with the older data and an interpretation has been carried out of the structure of the top basalt reflection. This work shows a fault pattern in general agreement with that of Whittaker (1995, 1996), although there are differences in detail. In particular the largest structural closure reported by Whittaker (1995) has not been confirmed. Furthermore, one of Whittaker’s (1995) smaller leads seems to be larger than he had interpreted and may be associated with a DHI (direct hydrocarbon indicator) in the form of a ‘bright spot’.


2015 ◽  
Vol 3 (1) ◽  
pp. SB5-SB15 ◽  
Author(s):  
Kurt J. Marfurt ◽  
Tiago M. Alves

Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Seismic attributes are at their best in extracting subtle and easy to overlook features on high-quality seismic data. However, seismic attributes can also exacerbate otherwise subtle effects such as acquisition footprint and velocity pull-up/push-down, as well as small processing and velocity errors in seismic imaging. As a result, the chance that an interpreter will suffer a pitfall is inversely proportional to his or her experience. Interpreters with a history of making conventional maps from vertical seismic sections will have previously encountered problems associated with acquisition, processing, and imaging. Because they know that attributes are a direct measure of the seismic amplitude data, they are not surprised that such attributes “accurately” represent these familiar errors. Less experienced interpreters may encounter these errors for the first time. Regardless of their level of experience, all interpreters are faced with increasingly larger seismic data volumes in which seismic attributes become valuable tools that aid in mapping and communicating geologic features of interest to their colleagues. In terms of attributes, structural pitfalls fall into two general categories: false structures due to seismic noise and processing errors including velocity pull-up/push-down due to lateral variations in the overburden and errors made in attribute computation by not accounting for structural dip. We evaluate these errors using 3D data volumes and find areas where present-day attributes do not provide the images we want.


10.1144/sp509 ◽  
2021 ◽  
Vol 509 (1) ◽  
pp. NP-NP
Author(s):  
J. Hendry ◽  
P. Burgess ◽  
D. Hunt ◽  
X. Janson ◽  
V. Zampetti

Modern seismic data have become an essential toolkit for studying carbonate platforms and reservoirs in impressive detail. Whilst driven primarily by oil and gas exploration and development, data sharing and collaboration are delivering fundamental geological knowledge on carbonate systems, revealing platform geomorphologies and how their evolution on millennial time scales, as well as kilometric length scales, was forced by long-term eustatic, oceanographic or tectonic factors. Quantitative interrogation of modern seismic attributes in carbonate reservoirs permits flow units and barriers arising from depositional and diagenetic processes to be imaged and extrapolated between wells.This volume reviews the variety of carbonate platform and reservoir characteristics that can be interpreted from modern seismic data, illustrating the benefits of creative interaction between geophysical and carbonate geological experts at all stages of a seismic campaign. Papers cover carbonate exploration, including the uniquely challenging South Atlantic pre-salt reservoirs, seismic modelling of carbonates, and seismic indicators of fluid flow and diagenesis.


2021 ◽  
pp. SP509-2021-51
Author(s):  
J. Hendry ◽  
P. Burgess ◽  
D. Hunt ◽  
X. Janson ◽  
V. Zampetti

AbstractImproved seismic data quality in the last 10–15 years, innovative use of seismic attribute combinations, extraction of geomorphological data, and new quantitative techniques, have significantly enhanced understanding of ancient carbonate platforms and processes. 3D data have become a fundamental toolkit for mapping carbonate depositional and diagenetic facies and associated flow units and barriers, giving a unique perspective how their relationships changed through time in response to tectonic, oceanographic and climatic forcing. Sophisticated predictions of lithology and porosity are being made from seismic data in reservoirs with good borehole log and core calibration for detailed integration with structural, paleoenvironmental and sequence stratigraphic interpretations. Geologists can now characterise entire carbonate platform systems and their large-scale evolution in time and space, including systems with few outcrop analogues such as the Lower Cretaceous Central Atlantic “Pre-Salt” carbonates. The papers introduced in this review illustrate opportunities, workflows, and potential pitfalls of modern carbonate seismic interpretation. They demonstrate advances in knowledge of carbonate systems achieved when geologists and geophysicists collaborate and innovate to maximise the value of seismic data from acquisition, through processing to interpretation. Future trends and developments, including machine learning and the significance of the energy transition, are briefly discussed.


2018 ◽  
Vol 10 (1) ◽  
pp. 174-191 ◽  
Author(s):  
Majid Khan ◽  
Yike Liu ◽  
Asam Farid ◽  
Muhammad Owais

Abstract Regional seismic reflection profiles and deep exploratory wells have been used to characterize the subsurface structural trends and seismo-stratigraphic architecture of the sedimentary successions in offshore Indus Pakistan. To improve the data quality, we have reprocessed the seismic data by applying signal processing scheme to enhance the reflection continuity for obtaining better results. Synthetic seismograms have been used to identify and tie the seismic reflections to the well data. The seismic data revealed tectonically controlled, distinct episodes of normal faulting representing rifting during Mesozoic and transpression at Late Eocene time. A SW-NE oriented anticlinal type push up structure is observed resulted from the basement reactivation and recent transpression along Indian Plate margin. The structural growth of this particular pushup geometry was computed. Six mappable seismic sequences have been identified on seismic records. In general, geological formations are at shallow depths towards northwest due to basement blocks uplift. A paleoshelf is also identified on seismic records overlain by Cretaceous sediments, which is indicative of Indian-African Plates rifting at Jurassic time. The seismic interpretation reveals that the structural styles and stratigraphy of the region were significantly affected by the northward drift of the Indian Plate, post-rifting, and sedimentation along its western margin during Middle Cenozoic. A considerable structural growth along the push up geometry indicates present day transpression in the margin sediments. The present comprehensive interpretation can help in understanding the complex structures in passive continental margins worldwide that display similar characteristics but are considered to be dominated by rifting and drifting tectonics.


2021 ◽  
Vol 19 (3) ◽  
pp. 125-138
Author(s):  
S. Inichinbia ◽  
A.L. Ahmed

This paper presents a rigorous but pragmatic and data driven approach to the science of making seismic-to-well ties. This pragmatic  approach is consistent with the interpreter’s desire to correlate geology to seismic information by the use of the convolution model,  together with least squares matching techniques and statistical measures of fit and accuracy to match the seismic data to the well data. Three wells available on the field provided a chance to estimate the wavelet (both in terms of shape and timing) directly from the seismic and also to ascertain the level of confidence that should be placed in the wavelet. The reflections were interpreted clearly as hard sand at H1000 and soft sand at H4000. A synthetic seismogram was constructed and matched to a real seismic trace and features from the well are correlated to the seismic data. The prime concept in constructing the synthetic is the convolution model, which represents a seismic reflection signal as a sequence of interfering reflection pulses of different amplitudes and polarity but all of the same shape. This pulse shape is the seismic wavelet which is formally, the reflection waveform returned by an isolated reflector of unit strength at the target  depth. The wavelets are near zero phase. The goal and the idea behind these seismic-to-well ties was to obtain information on the sediments, calibration of seismic processing parameters, correlation of formation tops and seismic reflectors, and the derivation of a  wavelet for seismic inversion among others. Three seismic-to-well ties were done using three partial angle stacks and basically two formation tops were correlated. Keywords: seismic, well logs, tie, synthetics, angle stacks, correlation,


Sign in / Sign up

Export Citation Format

Share Document