New geophysical and geological results in frontier basins along the southwest Australian continental margin

2009 ◽  
Vol 49 (2) ◽  
pp. 587
Author(s):  
Chris Nicholson ◽  
Edward Bowen ◽  
George Bernardel ◽  
Barry Bradshaw ◽  
Irina Borissova ◽  
...  

Under the Australian Government’s Energy Security Program, Geoscience Australia is conducting a seismic survey and a marine reconnaissance survey to acquire new geophysical data and obtain geological samples in frontier basins along the southwest Australian continental margin. Specific areas of interest include the Mentelle Basin, northern Perth Basin, Wallaby Plateau and the southern Carnarvon Basin. The regional seismic survey will acquire 8,000–10,000 km of industry-standard 2D reflection seismic data using an 8 km solid streamer and a 12 second record length, together with gravity and magnetic data. These new geophysical datasets, together with over 7,000 km of reprocessed open-file seismic, will facilitate more detailed mapping of the regional geology, determination of total sediment thickness, interpretation of the nature and thickness of crust beneath the major depocentres, modelling of the tectonic evolution and an assessment of the petroleum prospectivity of frontier basins along the southwest margin. The overall scientific aim of the marine survey is to collect swath bathymetry, potential field data, geological samples and biophysical data. Together with the new seismic data, samples recovered from frontier basins will assist in understanding the geological setting and petroleum prospectivity of these little known areas. Preliminary results from both surveys will be presented for the first time at this conference.

2011 ◽  
Vol 51 (2) ◽  
pp. 746
Author(s):  
Irina Borissova ◽  
Gabriel Nelson

In 2008–9, under the Offshore Energy Security Program, Geoscience Australia (GA) acquired 650 km of seismic data, more than 3,000 km of gravity and magnetic data, and, dredge samples in the southern Carnarvon Basin. This area comprises the Paleozoic Bernier Platform and southern part of the Mesozoic Exmouth Sub-basin. The new seismic and potential field data provide a new insight into the structure and sediment thickness of the deepwater southernmost part of the Exmouth Sub-basin. Mesozoic depocentres correspond to a linear gravity low, in water depths between 1,000–2,000 m and contain between 2–3 sec (TWT) of sediments. They form a string of en-echelon northeast-southwest oriented depressions bounded by shallow-dipping faults. Seismic data indicates that these depocentres extend south to at least 24°S, where they become more shallow and overprinted by volcanics. Potential plays in this part of the Exmouth Sub-basin may include fluvio-deltaic Triassic sandstone and Lower–Middle Jurassic claystone source rocks sealed by the regional Early Cretaceous Muderong shale. On the adjoining Bernier Platform, minor oil shows in the Silurian and Devonian intervals at Pendock–1a indicate the presence of a Paleozoic petroleum system. Ordovician fluvio-deltaic sandstones sealed by the Silurian age marine shales, Devonian reef complexes and Miocene inversion anticlines are identified as potential plays. Long-distance migration may contribute to the formation of additional plays close to the boundary between the two provinces. With a range of both Mesozoic and Paleozoic plays, this under-explored region may have a significant hydrocarbon potential.


2004 ◽  
Vol 159 (1) ◽  
pp. 117-128 ◽  
Author(s):  
I. Contrucci ◽  
F. Klingelhöfer ◽  
J. Perrot ◽  
R. Bartolome ◽  
M.-A. Gutscher ◽  
...  

GeoArabia ◽  
2014 ◽  
Vol 19 (1) ◽  
pp. 17-44
Author(s):  
Allen S. Neville ◽  
Douglas J. Cook ◽  
Abdulkader M. Afifi ◽  
Simon A. Stewart

ABSTRACT Reflection seismic data acquired for hydrocarbon exploration in Saudi Arabia have revealed five buried crater structures ranging in diameter from 5 km to 34 km. These structures have little or no present-day surface expression and span a range of ages from Ordovician to Cenozoic. The Saqqar structure (29°35′N, 38°42″E) is 34 km in diameter and is formed in Devonian siliciclastics. The structure is partially eroded and is unconformably overlain by Upper Cretaceous and Paleogene strata up to 400 m thick. The Jalamid structure (31°27′N, 39°35″E) is 19 km in diameter at Lower Ordovician level and is infilled by Middle Ordovician sediments, at a present-day depth of 4,500 m. The Banat Baqar structure (29°07′N, 37°36″E) is 12 km in diameter at Middle Ordovician level and infilled by Upper Ordovician sediments, at a depth of 2,000 m. The Hamidan structure (20°36′N, 54°44″E) is 16 km in diameter at Paleogene level and is overlain by a thin veneer of Recent sediment. The Zaynan structure (20°23′N, 50°08″E) is 5 km in diameter and affects Triassic sediments at depth of 3,800 m, and is infilled by Jurassic strata. In addition to reflection seismic imaging, various amounts of gravity and magnetic data and drilled wells are available in or near these structures. Various models including impact cratering are discussed here for each structure. One structure (Saqqar) has yielded quartz grains with possible shock metamorphic features that, contingent on future work, may support a meteorite impact crater interpretation.


2007 ◽  
Author(s):  
Frauke Klingelhoefer ◽  
Daniel Aslanian* ◽  
Cynthia Labails ◽  
Jean-Louis Olivet ◽  
Hervé Nouzé ◽  
...  

1989 ◽  
Vol 20 (2) ◽  
pp. 25 ◽  
Author(s):  
P.M. Smith ◽  
M. Whitehead

The presence of a large anomalous structure in the northern part of Permit AC/P2 in the Timor Sea has been recognised ever since seismic data were first acquired in the area. Historically, however, sparse seismic coverage has always prevented a detailed and unambiguous interpretation of the complicated structure. In order to overcome this problem, some 2000 km of 3D seismic data were acquired over the feature. In conjunction with this seismic survey, detailed gravity and magnetic data sets were also recorded over the structure.Interpretation of the new seismic data indicated the presence of a piercement structure which is associated with a small negative Bouguer gravity anomaly and a magnetic intensity anomaly resulting from a positive susceptibility contrast. Modelling of the magnetic data indicated that an acidic or intermediate intrusive body was the most likely cause of the piercement structure. The presence of an acidic intrusive body was consistent with the gravity data which indicated that no large density contrast existed between the material of the piercement structure and the surrounding sediments.The combined interpretation of these three data sets was tested by a well, Paqualin-1, drilled on the flank of the piercement structure. The well encountered a thick evaporite sequence with associated thin bands of magnetitie and intermediate igneous rocks. It was logged with a three component downhole magnetic probe and forward magentic modelling work incorporating the results of the magnetic log gave good agreement with the observed aeromagnetic profiles.


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 423-430 ◽  
Author(s):  
Richard D. Miller ◽  
Neil L. Anderson ◽  
Howard R. Feldman ◽  
Evan K. Franseen

A 400-m long, 12‐fold high‐resolution common depth point (CDP) reflection seismic profile was acquired across shallow converging Pennsylvanian strata in the Independence area of southeastern Kansas. One of the principal objectives was to determine practical vertical resolution limits in an excellent shallow seismic‐data area with borehole control. The dominant frequency of the CDP stacked data is in excess of 150 Hz based on peak‐to‐peak measurements. Interference phenomena observed on stacked seismic data incorporated with models derived from log and drill‐hole information suggest a practical vertical resolution limit of about 7 m, or one‐third of the dominant wavelength. This practical resolution is slightly less than the predicted (theoretical) resolution limit of 5 m based on the generally accepted one‐quarter wavelength axiom. These data suggest conventional rules of thumb describing resolution potential are not accurate when reflectors on shallow, narrow bandwidth data converge rapidly across horizontal distances less than the Fresnel Zone.


2017 ◽  
Vol 17 (1) ◽  
pp. 25
Author(s):  
Fitri Rizqi Azizah ◽  
Puguh Hiskiawan ◽  
Sri Hartanto

Oil and natural gas as a fossil fuel that is essential for human civilization, and included in nonrenewable energy, making this energy source is not easy for updated availability. So that it is necessary for exploration and exploitation reliable implementation. Seismic exploration becomes the method most widely applied in the oil, in particular reflection seismic exploration. Data wells (depth domain) and seismic data (time domain) of reflection seismic survey provides information wellbore within the timescale. As for the good interpretation needed information about the state of the earth and is able to accurately describe the actual situation (scale depth). Conversion time domain into the depth domain into things that need to be done in generating qualified exploration map. Method of time-depth curve to be the method most preferred by the geophysical interpreter, in addition to a fairly short turnaround times, also do not require a large budget. Through data information check-shot consisting of the well data and seismic data, which is then exchanged plotted, forming a curve time-depth curve, has been able to produce a map domain depth fairly reliable based on the validation value obtained in the range of 54 - 176m difference compared to the time domain maps previously generated.Keywords: Energy nonrenewable, survei seismik, peta domain waktu, peta domain kedalaman, time-depth curve


Author(s):  
Frauke Klingelhoefer ◽  
Isabelle Contrucci ◽  
Daniel Aslanian ◽  
Cynthia Labails ◽  
Jean-Louis Olivet ◽  
...  

2020 ◽  
pp. 15-20
Author(s):  
Jessica Morales González ◽  
Manuel Pardo-Echarte ◽  
Osvaldo Rodríguez-Morán

In various geological situations, seismic data provides little information about whether a trap contains hydrocarbons. It is well documented that the generality of hydrocarbon accumulations has predominantly vertical microfiltration. The use of non-seismic and non-conventional exploration methods, integrated with geological and seismic data, enables a better evaluation of prospects and exploration risk; such is the purpose of the investigation. The general objective was to map possible new gaso-petroleum targets that support exploration in the study region. The cartography of the areas of interest would be based on the presence of the indicator anomalies: gravimetric, aeromagnetic and airborne gamma spectrometric. In addition, a 2D model of the potential fields of the Jatibonico oilfield was designed to validate the hypothesis that the magnetic maximums reduced to the pole are the cartographic expression of the continental margin carbonate uplifts. The results indicate that the anomalous complex of the Cristales oilfield is reproduced in the location of La Vigía, which manifests as a preserved occurrence, according to the results of recognition by the Redox Complex.


2015 ◽  
Vol 656 ◽  
pp. 154-174 ◽  
Author(s):  
Y. Biari ◽  
F. Klingelhoefer ◽  
M. Sahabi ◽  
D. Aslanian ◽  
P. Schnurle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document