Cetaceans and the petroleum industry—coexistence or mutual exclusion?

2010 ◽  
Vol 50 (2) ◽  
pp. 685
Author(s):  
John Polglaze

Legends, myths and plain old misinformation abound of whale migrations interrupted by international shipping, dolphin populations displaced by dredging activities, and of seismic survey campaigns resulting in disoriented, beached whales. While risks exist, in truth the Australian petroleum industry continues to demonstrate that it can successfully coexist productively alongside populations of cetacean. These whales and dolphins are seemingly able to at least tolerate, if not actually be undisturbed by, underwater noise. Other risks to cetaceans from oil and gas activities, whether actual or perceived, encompass vessel strike, turbidity plumes from dredging, port developments, underwater blasting, spills, the laying and operation of pipelines, and similar. URS Australia’s John Polglaze is a specialist in the environmental impact evaluation of underwater noise, and has over 15 years experience in marine environmental management and impact assessment following nearly 20 years service in the Royal Australian Navy. John presents on the range of environmental impact assessment challenges for the oil and gas industry in Australian coastal and offshore regions, and effective, pragmatic solutions for demonstrating low risks to cetaceans and other sensitive marine fauna. These include the application and limitations of computer-based models to predict underwater noise and blast propagation, the development of a risk assessment framework that has proven effective with state and Commonwealth regulators, and case studies of real-life interactions between the petroleum industry and cetacean populations. In particular, he will discuss how misunderstanding and misapprehension of these complex issues unnecessarily complicates the challenges of environmental compliance. This topic is timely, given that Australia’s rapidly increasing whale populations, coupled with the continued expansion of offshore petroleum activities, will lead to more frequent interaction between and overlap of cetaceans and oil and gas activities.

2011 ◽  
Vol 51 (1) ◽  
pp. 467
Author(s):  
Dick Petersen ◽  
Antoine David ◽  
Darren Jurevicius

The oil and gas industry uses some exploration and production technologies that produce high levels of underwater sound, such as seismic surveys, underwater blasting for demolition and construction, and offshore piling. These underwater noise sources have the potential to impact marine species, which are usually reliant on sound instead of light as their primary sense for communication and sensing their environment. Regulatory interest in minimising the impacts of underwater noise on marine fauna is increasing. This paper presents a methodology for assessing these environmental impacts, with particular focus on cetaceans (whales and dolphins) and pinnipeds (seals and sea lions), although it can easily be adapted to other marine mammal species and fishes. It requires input from a variety of fields, such as: underwater acoustics for sound propagation modelling and source noise characterisation; marine bio-acoustics for determining the effects of sound on marine species’ hearing and communication; and marine ecology for identifying the marine species that may be affected and assessing the biological importance of noise-affected marine areas. These inputs are used in a risk assessment to assess the likely impacts of underwater noise on marine species, which is a collaborative effort by specialists in the fields of underwater acoustics, marine bio-acoustics and marine ecology.


1986 ◽  
Vol 39 (11) ◽  
pp. 1687-1696 ◽  
Author(s):  
Jean-Claude Roegiers

The petroleum industry offers a broad spectrum of problems that falls within the domain of expertise of mechanical engineers. These problems range from the design of well production equipment to the evaluation of formation responses to production and stimulation. This paper briefly describes various aspects and related difficulties with which the oil industry has to deal, from the time the well is spudded until the field is abandoned. It attempts to delineate the problems, to outline the approaches presently used, and to discuss areas where additional research is needed. Areas of current research activity also are described; whenever appropriate, typical or pertinent case histories are used to illustrate a point.


2021 ◽  
Author(s):  
Cenk Temizel ◽  
Celal Hakan Canbaz ◽  
Hakki Aydin ◽  
Bahar F. Hosgor ◽  
Deniz Yagmur Kayhan ◽  
...  

Abstract Digital transformation is one of the most discussed themes across the globe. The disruptive potential arising from the joint deployment of IoT, robotics, AI and other advanced technologies is projected to be over $300 trillion over the next decade. With the advances and implementation of these technologies, they have become more widely-used in all aspects of oil and gas industry in several processes. Yet, as it is a relatively new area in petroleum industry with promising features, the industry overall is still trying to adapt to IR 4.0. This paper examines the value that Industry 4.0 brings to the oil and gas upstream industry. It delineates key Industry 4.0 solutions and analyzes their impact within this segment. A comprehensive literature review has been carried out to investigate the IR 4.0 concept's development from the beginning, the technologies it utilizes, types of technologies transferred from other industries with a longer history of use, robustness and applicability of these methods in oil and gas industry under current conditions and the incremental benefits they provide depending on the type of the field are addressed. Real field applications are illustrated with applications indifferent parts of the world with challenges, advantages and drawbacks discussed and summarized that lead to conclusions on the criteria of application of machine learning technologies.


2020 ◽  
Vol 8 (8) ◽  
pp. 555 ◽  
Author(s):  
Dejan Brkić ◽  
Pavel Praks

Ships for drilling need to operate in the territorial waters of many different countries which can have different technical standards and procedures. For example, the European Union and European Economic Area EU/EEA product safety directives exclude from their scope drilling ships and related equipment onboard. On the other hand, the EU/EEA offshore safety directive requires the application of all the best technical standards that are used worldwide in the oil and gas industry. Consequently, it is not easy to select the most appropriate technical standards that increase the overall level of safety and environmental protection whilst avoiding the costs of additional certifications. We will show how some technical standards and procedures, which are recognized worldwide by the petroleum industry, can be accepted by various standardization bodies, and how they can fulfil the essential health and safety requirements of certain directives. Emphasis will be placed on the prevention of fire and explosion, on the safe use of equipment under pressure, and on the protection of personnel who work with machinery. Additionally considered is how the proper use of adequate procedures available at the time would have prevented three large scale offshore petroleum accidents: the Macondo Deepwater Horizon in the Gulf of Mexico in 2010; the Montara in the Timor Sea in 2009; the Piper Alpha in the North Sea in 1988.


1992 ◽  
Vol 32 (1) ◽  
pp. 413
Author(s):  
Peter Farrell ◽  
John Yeates

A mosaic-like compendium of information on the marine biotic environment of the North West Shelf has been compiled from a number of different sources. The areas most valued coincide with those most vulnerable to disturbance. Regulatory authorities require some form of impact assessment to be carried out by oil and gas explorers and producers as a condition of operation. Considerable expenditure is incurred annually by these companies in complying with these requirements, but current assessment methods do not always consider the scale of possible impacts nor the scientific validity of the results. Despite acceptance, and therefore implied approval of these assessments by the regulatory authorities, adjustments should be made to the current methodology to improve the cost effectiveness of the assessments and to improve the scientific validity of the results.Design of environmental impact assessment of exploration and production operations should consider the relative weighting given to potential acute versus chronic impacts. Prediction of possible impacts enables quantifiable relevant parameters for impact assessment to be identified. Monitoring of indicator species is a cost-effective method of detecting acute effects. Community census methods can be used to detect chronic effects.Statistical analysis of data is a vital, yet frequently ignored, aspect of environmental impact assessment, as is the depositing of voucher specimens for future reference. Statistical analysis can be based on either changes in the difference between specific parameters at the impact and control sites, or comparison of variance between sites over time. Decisions regarding sample area and number of sample replicates should be made based on the required precision of the assessment.


2016 ◽  
Vol 56 (2) ◽  
pp. 585
Author(s):  
Christopher Coldrick ◽  
Rowan Fenn ◽  
David Sahota

Maintenance, repair and operating (MRO) materials typically represent 15–20% of the operating costs for a mature oil and gas asset. Of this, a substantial proportion is comprised of high-value repairable equipment such as motors, compressors and pumps. This equipment is often at bottlenecks in the production process and so the impact of materials cost on profitability is magnified by the production ramifications of an outage. Effective management of this equipment is key to the sustainable, profitable operation of any oil and gas asset, and is key to improving the competitiveness of the Australian industry. Oil and gas companies are adopting a variety of models to handle the repair process, with varying degrees of success. Challenges include: poor materials availability and lack of traceability; complex infield materials management processes resulting in costly wastages; difficulty in managing consistency, suitability and specifications of repairs; high cost for those undertaking the repairs; and, correct allocation of responsibility and risk in the materials management process. Developed in collaboration with Australian oil and gas operators, with input from case studies outside the oil and gas industry, this extended abstract discusses the roles and opportunities for the circular economy in helping companies to meet their sustainability and profitability targets. Using several real-life examples, it makes recommendations for vendors, service providers and operators that can have material impact on the profitability of the industry.


Sign in / Sign up

Export Citation Format

Share Document