scholarly journals Seismic analysis of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity: examples from the southern Australian margin

2012 ◽  
Vol 52 (1) ◽  
pp. 229 ◽  
Author(s):  
Simon Holford ◽  
Nick Schofield ◽  
Justin MacDonald ◽  
Ian Duddy ◽  
Paul Green

The increasing availability of 3D seismic data from sedimentary basins at volcanic and non-volcanic continental margins has provided fundamental new insights into both the storage and transport of magma in the continental crust. As global hydrocarbon exploration increasingly focuses on passive margin basins with evidence for past intrusive and extrusive igneous activity, constraining the distribution, timing and pathways of magmatism in these basins is essential to reduce exploration risk. Producing and prospective Australian passive margin basins where igneous systems have been identified include the Bight, Otway, Bass, Gippsland and Sorell basins of the southern margin. This paper reviews both the impacts of volcanic activity on sedimentary basin hydrocarbon prospectivity (e.g. advective heating, reservoir compartmentalisation and diagenesis), and the styles, distribution and timing of late Cretaceous–Recent extrusive and intrusive igneous activity along basins of the southern Australian margin, providing illustrative examples based on 2D and 3D seismic reflection data.

2021 ◽  
pp. 2250-2261
Author(s):  
Ahmed Muslim Khawaja ◽  
Jassim Muhammad Thabit

     This research is an attempt to solve the ambiguity associated with the stratigraphic setting of the main reservoir (late Cretaceous) of Mishrif Formation in Dujaila oil field. This was achieved by studying a 3D seismic reflection post-stack data for an area of ​​602.62 Km2 in Maysan Governorate, southeast of Iraq. Seismic analysis of the true amplitude reflections, time maps, and 3D depositional models showed a sufficient seismic evidence that the Mishrif Formation produces oil from a stratigraphic trap of isolated reef carbonate buildups that were grown on the shelf edge of the carbonate platform, located in the area around the productive well Dujaila-1. The low-frequency attribute illustrated that it is restricted in the area around the productive well Dujaila-1, which confirmed the existence of reef porous carbonate buildups and hydrocarbon accumulation in this region. The pay zone of the reef mound trap extends for about 7 km from the well Dujaila-1 toward the southwest side and 4 km toward the well Dujaila-2, without reaching it, which is explaining why it was dry. Therefore, this area to the south of the productive well Dujaila-1 represents a good area for low-risk drilling. Consequently, the hydrocarbon system observed in the Dujaila oil field provides a new opportunity to explore and produce oil in Mishrif Formation in other areas on the flank of the productive structures and in flat areas situated on the belt of the carbonate platform edge.


2017 ◽  
Vol 5 (3) ◽  
pp. SK11-SK22 ◽  
Author(s):  
Craig Magee ◽  
Christopher A.-L. Jackson ◽  
Jonathon P. Hardman ◽  
Matthew T. Reeve

Igneous sills emplaced at shallow levels in sedimentary basins commonly uplift the overburden and free surface. Uplift produces dome-shaped forced folds that may host economic hydrocarbon accumulations. These intrusion-induced forced folds are typically assumed to develop instantaneously, whereby the oldest onlapping strata constrain the age of sill emplacement, and accommodate the entire volume of intruded magma. However, several studies demonstrate that forced folds may grow over geologic timescales, with additional space-making mechanisms (e.g., compaction) partly accommodating the magma volume. It is thus critical to understand when forced fold traps form and how they evolve in relation to the timing of source rock maturation and migration. We analyze two forced folds imaged in 2D seismic reflection data from offshore northwest Australia. Analyzing the seismic stratigraphy of the forced fold overburden allows us to recognize several distinct phases of fold growth. Subhorizontal reflections onlapping onto the lower portion of the forced folds at a high angle indicate that the first phase of sill emplacement and fold development occurred rapidly, facilitated by normal faulting, prior to the deposition of overlying strata during a period of magmatic quiescence and regional hydrocarbon maturation in the Early Cretaceous. Renewed magmatic activity resulted in a final, protracted phase of doming, which is recorded by a package of onlapping growth strata that was incrementally deformed by successive intrusive pulses. We also demonstrate that in addition to folding and faulting, the magma volume was likely accommodated by porosity reduction within the folded strata. Our observations imply that the age of the lowermost onlapping reflections only constrain the onset of sill emplacement and not the duration of magmatic activity. Constraining the dynamic evolution of intrusion-induced forced folds from the structure of onlapping reflections during hydrocarbon exploration can thus provide critical insights into the potential volume and charge history of any hydrocarbon accumulations.


2021 ◽  
pp. jgs2021-032
Author(s):  
Clara Abu ◽  
Christopher A-L. Jackson ◽  
Malcolm Francis

Submarine landslides (slides) are some of the most voluminous sediment gravity-flows on Earth and they dominate the stratigraphic record of many sedimentary basins. Their general kinematics and internal structure are relatively well-understood. However, how slides increase in volume and internally deform as they evolve, and how these processes relate, in time and space, to the growth of their basal (shear) zone, are poorly understood. We here use three high-resolution 3D seismic surveys from the Angoche Basin, offshore Mozambique to map strain within a shallowly buried, large, and thus seismically well-imaged slide (c. 530 km3). We document several key kinematic indicators, including broadly NW-trending lateral margins and longitudinal shears bounding and within the slide body, respectively, and broadly NE-trending symmetric pop-up blocks in the slide toe. Approximately 7 km downdip of the slide toe wall, thrusts and related folds also occur within otherwise undeformed slope material, with thrusts detaching downwards onto the downslope continuation of the basal shear zone underlying the slide body. Based on the style, trend, and distribution of these features, and their cross-cutting relationships, we propose an emplacement model involving two distinct phases of deformation: (i) bulk shortening, parallel to the overall SE-directed emplacement direction, with contractional shear strains reaching c. 8%; and (ii) the development of broadly emplacement direction-parallel shear zones that offset the earlier-formed shortening structures. We infer that the contractional strains basinward of the slide body formed due to cryptic basinward propagation of the basal shear zone ahead of and to accommodate updip sliding and shortening associated with, the entire slide mass. Our study demonstrates the value of using 3D seismic reflection data to reveal slide emplacement kinematics, especially the multiphase, non-coaxial nature of deformation, and the dynamics of basal shear zone growth.


2011 ◽  
Vol 48 (6) ◽  
pp. 870-896 ◽  
Author(s):  
Janet Riddell

The south-central Intermontane belt of British Columbia has a complex architecture comprising late Paleozoic to Mesozoic volcanic and plutonic arc magmatic suites, marine and nonmarine clastic basins, high-grade metamorphic complexes, and accretionary rocks. Jurassic and Cretaceous clastic basins within this framework contain stratigraphy with hydrocarbon potential. The geology is complicated by Cretaceous to Eocene deformation, dismemberment, and dislocation. The Eocene to Neogene history of the southern Intermontane belt is dominated by non-arc volcanism, followed by Pleistocene to Recent glaciation. The volcanic and glacial cover makes this a difficult region to explore for resources. Much recent work has involved re-evaluating the challenges that the overlying volcanic cover has historically presented to geophysical imaging of the sedimentary rocks in this region in light of technological advances in geophysical data collection and analysis. This paper summarizes the lithological and stratigraphic framework of the region, with emphasis on description of the sedimentary units that have been the targets of hydrocarbon exploration.


2021 ◽  
Author(s):  
Hongdan Deng ◽  
Ken McClay

<div>Basement fault reactivation, and the growth, interaction, and linkage with new fault segments are fundamentally three-dimensional and critical for understanding the evolution of fault network development in sedimentary basins. This paper analyses the evolution of a complex, basement-involved extensional fault network on the Enderby Terrace on the eastern margin of the Dampier sub-basin, NW Shelf of Australia. A high-resolution, depth-converted, 3D seismic reflection data volume is used to show that multiphase, oblique extensional reactivation of basement-involved faults controlled the development of the fault network in the overlying strata. Oblique reactivation of the pre-existing faults initially led to the formation of overlying, en échelon Late Triassic – Middle Jurassic fault segments that, as WNW–directed rifting progressed on the margin, linked by breaching of relay ramp to form two intersecting fault systems (F1 and F2-F4). Further reactivation in the Latest Jurassic – Early Cretaceous (NNW–SSE extension) produced an additional set of en échelon fault arrays in the cover strata. The final fault network consists of main or principal faults and subordinate or splay faults, together with branch lines that link the various components. Our study shows that breaching of relay ramps and/or vertical linkages produces vertical and horizontal branch lines giving complex final fault geometries. We find that repeated activity of the basement-involved faults tends to form continuous and planar fault architectures that favor displacement transfer between the main constituent segments along strike and with depth.</div>


2020 ◽  
Author(s):  
Craig Magee ◽  
Christopher A.-L. Jackson

Abstract. Dyke swarms are common on Earth and other planetary bodies, comprising arrays of dykes that can extend for 10's to 1000's of kilometres. The vast extent of such dyke swarms, and their rapid emplacement, means they can significantly influence a variety of planetary processes, including continental break-up, crustal extension, resource accumulation, and volcanism. Determining the mechanisms driving dyke swarm emplacement is thus critical to a range of Earth Science disciplines. However, unravelling dyke swarm emplacement mechanics relies on constraining their 3D structure, which is extremely difficult given we typically cannot access their subsurface geometry at a sufficiently high enough resolution. Here we use high-quality seismic reflection data to identify and examine the 3D geometry of the newly discovered Exmouth Dyke Swarm, and associated structures (i.e. dyke-induced normal faults and pit craters), in unprecedented detail. The latest Jurassic dyke swarm is located on the Gascoyne Margin offshore NW Australia and contains numerous dykes that are > 170 km long, potentially > 500 km long. The mapped dykes are distributed radially across a 39° arc centred on the Cuvier Margin; we infer this focal area marks the source of the dyke swarm, which was likely a mantle plume. We demonstrate seismic reflection data provides unique opportunities to map and quantify dyke swarms in 3D in sedimentary basins, which can allow us to: (i) recognise dyke swarms across continental margins worldwide and incorporate them into models of basin evolution and fluid flow; (ii) test previous models and hypotheses concerning the 3D structure of dyke swarms; (iii) reveal how dyke-induced normal faults and pit craters relate to dyking; and (iv) unravel how dyking translates into surface deformation.


2004 ◽  
Vol 52 (3) ◽  
pp. 215-233 ◽  
Author(s):  
Glen S. Stockmal ◽  
Art Slingsby ◽  
John W.F. Waldron

Abstract Recent hydrocarbon exploration in western Newfoundland has resulted in six new wells in the Port au Port Peninsula area. Port au Port No.1, drilled in 1994/95, penetrated the Cambro-Ordovician platform and underlying Grenville basement in the hanging wall of the southeast-dipping Round Head Thrust, terminated in the platform succession in the footwall of this basement-involved inversion structure, and discovered the Garden Hill petroleum pool. The most recent well, Shoal Point K-39, was drilled in 1999 to test a model in which the Round Head Thrust loses reverse displacement to the northeast, eventually becoming a normal fault. This model hinged on an interpretation of a seismic reflection survey acquired in 1996 in Port au Port Bay. This survey is now in the public domain. In our interpretation of these data, the Round Head Thrust is associated with another basement-involved feature, the northwest-dipping Piccadilly Bay Fault, which is mapped on Port au Port Peninsula. Active as normal faults in the Taconian foreland, both these faults were later inverted during Acadian orogenesis. The present reverse offset on the Piccadilly Bay Fault was previously interpreted as normal offset on the southeast-dipping Round Head Thrust. Our new interpretation is consistent with mapping on Port au Port Peninsula and north of Stephenville, where all basement-involved faults are inverted and display reverse senses of motion. It also explains spatially restricted, enigmatic reflections adjacent to the faults as carbonate conglomerates of the Cape Cormorant Formation or Daniel’s Harbour Member, units associated with inverted thick-skinned faults. The K-39 well, which targeted the footwall of the Round Head Thrust, actually penetrated the hanging wall of the Piccadilly Bay Fault. This distinction is important because the reservoir model invoked for this play involved preferential karstification and subsequent dolomitization in the footwalls of inverted thick-skinned faults. The apparent magnitude of structural inversion across the Piccadilly Bay Fault suggests other possible structural plays to the northeast of K-39.


2014 ◽  
Vol 2 (1) ◽  
pp. SA151-SA162 ◽  
Author(s):  
John H. McBride ◽  
R. William Keach ◽  
Eugene E. Wolfe ◽  
Hannes E. Leetaru ◽  
Clayton K. Chandler ◽  
...  

Because the confinement of [Formula: see text] in a storage reservoir depends on a stratigraphically continuous set of seals to isolate the fluid in the reservoir, the detection of structural anomalies is critical for guiding any assessment of a potential subsurface carbon storage site. Employing a suite of 3D seismic attribute analyses (as opposed to relying upon a single attribute) maximizes the chances of identifying geologic anomalies or discontinuities (e.g., faults) that may affect the integrity of a seal that will confine the stored [Formula: see text] in the reservoir. The Illinois Basin, a major area for potential carbon storage, presents challenges for target assessment because geologic anomalies can be ambiguous and easily misinterpreted when using 2D seismic reflection data, or even 3D data, if only conventional display techniques are used. We procured a small 3D seismic reflection data set in the central part of the basin (Stewardson oil field) to experiment with different strategies for enhancing the appearance of discontinuities by integrating 3D seismic attribute analyses with conventional visualizations. Focusing on zones above and below the target interval of the Cambrian Mt. Simon Sandstone, we computed attribute traveltime slices (combined with vertical views) based on discontinuity computations, crossline-directed amplitude change, azimuth of the dip, shaded relief, and fault likelihood attributes. The results provided instructive examples of how discontinuities (e.g., subseismic scale faults) may be almost “invisible” on conventional displays but become detectable and mappable using an appropriate integration of 3D attributes. Strong discontinuities in underlying Precambrian basement rocks do not necessarily propagate upward into the target carbon storage interval. The origin of these discontinuities is uncertain, but we explored a possible strike-slip role that also explains the localization of a structural embayment developed in Lower Paleozoic strata above the basement discontinuities.


Sign in / Sign up

Export Citation Format

Share Document