THE DELIA FIELD, COOPER BASIN, SOUTH AUSTRALIA

1973 ◽  
Vol 13 (1) ◽  
pp. 58
Author(s):  
Martin Pyecroft

The Della gas field of the Cooper Basin, South Australia, was discovered by Pursuit Oil No Liability and joint venture associates in July 1970. The field covers an area of approximately 17,000 acres in a discrete culmination on the Nappacoongee-Murteree anticlinal trend.Production is from several fluviatile sandstone units within the Toolachee Formation of the Upper Permian Gidgealpa Group. The trap is essentially structural with a maximum closure of some 450 ft on the top of the Toolachee Formation above a probable gas-water contact at 6,460 ft subsea.Five of the seven wells drilled to date in the field have been completed as potential gas producers. Production occurs between 6,270 and 6,670 ft and the average total depth is 7,180 ft. Net pay thicknesses vary from 37 to 98 ft and good reservoir characteristics are typical of the producing sands in the field. Twenty-two days are normally required to drill and complete a productive well.

1997 ◽  
Vol 37 (1) ◽  
pp. 600
Author(s):  
R.C.M. McDonough

In February 1999 all Cooper Basin exploration acreage in South Australia, which has been under licence since 1954, will be relinquished and therefore become available to new explorers. To assist new explorers in evaluating exploration opportunities, Mines and Energy South Australia (MESA) has developed feasibility level costs for gas field developments which are independent of existing infrastructure owned by the Cooper Basin Joint Venturers. Alternatively, new producers may be able to negotiate access to existing facilities. MESA has developed estimated tolls based on pricing principles which imitate a competitive market. Tolls in this instance should lie between the operating cost of the facility as a minimum and the deprival value cost as a maximum.The study shows that if access to existing facilities is negotiated on a deprival value cost, fields with as little as 5 BCF (141 Mm3) recoverable raw gas are economic. However, if field development is totally independent of existing facilities, the minimum economic field size exceeds 35 BCF (987 Mm3) recoverable raw gas (assuming flaring of LPG is not permitted).MESA conducted this study based on data available in the public and commercial arenas. This demonstrates that it is possible for any company to develop their own data for development and negotiation purposes.


1981 ◽  
Vol 21 (1) ◽  
pp. 60
Author(s):  
T. M. Barr ◽  
Bridget C. Youngs

Cuttapirrie 1 discovered a significant oil accumulation at a depth of 8 016 ft in the Early Jurassic Hutton Sandstone of the Eromanga Basin. In addition, it discovered a small gas accumulation at 9 386 ft in the underlying Permo-Triassic Cooper Basin of South Australia. The well was 210 km from the nearest Jurassic oil field and 30 km from the nearest gas field when it was drilled.


1991 ◽  
Vol 31 (1) ◽  
pp. 244
Author(s):  
J. Pinchin ◽  
A.B. Mitchell

Kerna is a gas field within the south-central part of the Cooper Basin, 12 km southwest of the Dullingari Field and adjacent to the border of South Australia and Queensland. The trap is a domal anticline containing gas structurally trapped within the Early Permian Patchawarra Formation. The overlying Permian Epsilon Formation, above intervening shale, also contains gas, which may be stratigraphically trapped or restricted by permeability barriers around the southern and western flanks of the field.Seismic reflection amplitudes can be used to map the extent of the Epsilon gas sand. Seismic modelling studies show that the gas sand displays an amplitude-versus-offset (AVO) effect which distinguishes the gas sand from a wet sand or from a coal reflection at the same stratigraphic level. The spatial distribution of the AVO anomalies, and of the overall seismic stack response, has been mapped across the field. The interpreted 'seismic facies' map shows a meander belt across a coal swamp dominated flood plain. The distribution of AVO anomalies within and around this meander belt shows the likely occurrence of gas-bearing sandstones.This study has implications for other areas of the Cooper Basin where adequate separation between coal beds and gas sands allows the AVO effect of the latter to be observed. These AVO effects can then be used as a direct indicator of gas in stratigraphic and structural traps.


1973 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Roger C. N. Thornton

A lithofacies study on the Upper Permian Toolachee Formation has been conducted in the Gidgealpa-Moomba-Big Lake area to determine the suitability of the technique in the reconstruction of depositional environments and palaeogeographic trends throughout the Cooper Basin. The Toolachee Formation is one of the main gas producing intervals in the basin, especially in the area of study, which is approximately 2,000 square kilometres. Thirty-one wells drilled in this region indicate that the formation ranges in thickness from 35 metres to over 115 metres.The Toolachee Formation, taken as a whole, is too thick to show any significant features on a lithofacies map over the limited area of investigation. However, lithofacies maps of three approximately chronostratigraphic subdivisions of the same formation show both vertical and lateral trends. Vertically, the percentage of sandstone decreases from the lowermost subdivision to the uppermost subdivision; coal percentages show the opposite trend; and core material shows fining upwards sequences. Laterally, isopachous thin areas (depositional highs) in most cases correlated with an increase in shale or coal lithologies. Histograms of coal cycles show that the lower and middle parts have similar composite sequences of, from the base upwards, sandstone mixture of sandstone and shale-shalecoal.The depositional model proposed is an aggradational flood-plain which, prior to the commencement of deposition, had been eroded to a peneplain. Sediments were deposited from rivers of gradually declining flow gradient until marsh and lacustrine conditions prevailed for long periods of time. Deposition ceased at the sediplain stage.


1992 ◽  
Vol 32 (1) ◽  
pp. 67 ◽  
Author(s):  
K. A. Parker

The discoveries of the Katnook Field and, later, the Ladbroke Grove Field were significant milestones for hydrocarbon exploration in the southeast of South Australia as well as for the Otway Basin in general. The initial 1987 discovery at Katnook-1 of a relatively shallow gas accumulation in the basal part of the Eumeralla Formation was eclipsed in late 1988 at the Katnook-2 appraisal stage where deeper and more significant gas reserves were discovered in the Pretty Hill Sandstone.Technological improvement, in seismic acquisition, in particular, use of longer offset configurations and higher fold, and in filtering and correction techniques at the processing stage, are discussed in relation to improved geologic understanding. These aspects ultimately led to drilling success in both exploration and appraisal.At the deep Katnook discovery stage several significant problem areas remained unresolved. These related to uncertainties in vertical distribution of gas pay, level of a gas-water contact, and unreliable reserve estimates the result of the inability of conventional log analysis techniques to distinguish gas-bearing from water-bearing sands. Both in the evaluation of Katnook-2 and at the Katnook-3 appraisal stage, expensive cased-hole testing programs were undertaken to determine the size, extent and producibility of the gas accumulation. A key development between drilling Katnook-2 and Katnook-3 was the discovery of carbon dioxide-rich gas at Ladbroke Grove during 1989 in an adjacent structure to the south.The Katnook Field was the first commercial gas field development in the southeast, South Australian part of the Otway Basin, with gas sales commencing in March 1991, within a year of completing field appraisal. The discoveries, and subsequent development, have led to a renewed focus on the Otway Basin as a prospective hydrocarbon province.


Author(s):  
Vitaly P. Kosyakov ◽  
Amir A. Gubaidullin ◽  
Dmitry Yu. Legostaev

This article presents an approach aimed at the sequential application of mathematical models of different complexity (simple to complex) for modeling the development of a gas field. The proposed methodology allows the use of simple models as regularizers for the more complex ones. The main purpose of the applied mathematical models is to describe the energy state of the reservoir — reservoir pressure. In this paper, we propose an algorithm for adapting the model, which allows constructing reservoir pressure maps for the gas field, as well as estimating the dynamics of reservoir pressure with a possible output for determining the position of the gas-water contact level.


2003 ◽  
Vol 20 (1) ◽  
pp. 691-698
Author(s):  
M. J. Sarginson

AbstractThe Clipper Gas Field is a moderate-sized faulted anticlinal trap located in Blocks 48/19a, 48/19c and 48/20a within the Sole Pit area of the southern North Sea Gas Basin. The reservoir is formed by the Lower Permian Leman Sandstone Formation, lying between truncated Westphalian Coal Measures and the Upper Permian evaporitic Zechstein Group which form source and seal respectively. Reservoir permeability is very low, mainly as a result of compaction and diagenesis which accompanied deep burial of the Sole Pit Trough, a sub basin within the main gas basin. The Leman Sandstone Formation is on average about 715 ft thick, laterally heterogeneous and zoned vertically with the best reservoir properties located in the middle of the formation. Porosity is fair with a field average of 11.1%. Matrix permeability, however, is less than one millidarcy on average. Well productivity depends on intersecting open natural fractures or permeable streaks within aeolian dune slipface sandstones. Field development started in 1988. 24 development wells have been drilled to date. Expected recoverable reserves are 753 BCF.


2016 ◽  
Vol 56 (1) ◽  
pp. 29 ◽  
Author(s):  
Neil Tupper ◽  
Eric Matthews ◽  
Gareth Cooper ◽  
Andy Furniss ◽  
Tim Hicks ◽  
...  

The Waitsia Field represents a new commercial play for the onshore north Perth Basin with potential to deliver substantial reserves and production to the domestic gas market. The discovery was made in 2014 by deepening of the Senecio–3 appraisal well to evaluate secondary reservoir targets. The well successfully delineated the extent of the primary target in the Upper Permian Dongara and Wagina sandstones of the Senecio gas field but also encountered a combination of good-quality and tight gas pay in the underlying Lower Permian Kingia and High Cliff sandstones. The drilling of the Waitsia–1 and Waitsia–2 wells in 2015, and testing of Senecio-3 and Waitsia-1, confirmed the discovery of a large gas field with excellent flow characteristics. Wireline log and pressure data define a gross gas column in excess of 350 m trapped within a low-side fault closure that extends across 50 km2. The occurrence of good-quality reservoir in the depth interval 3,000–3,800 m is diagenetically controlled with clay rims inhibiting quartz cementation and preserving excellent primary porosity. Development planning for Waitsia has commenced with the likelihood of an early production start-up utilising existing wells and gas processing facilities before ramp-up to full-field development. The dry gas will require minimal processing, and access to market is facilitated by the Dampier–Bunbury and Parmelia gas pipelines that pass directly above the field. The Waitsia Field is believed to be the largest conventional Australian onshore discovery for more than 30 years and provides impetus and incentive for continued exploration in mature and frontier basins. The presence of good-quality reservoir and effective fault seal was unexpected and emphasise the need to consider multiple geological scenarios and to test unorthodox ideas with the drill bit.


Sign in / Sign up

Export Citation Format

Share Document