COOL-WATER CARBONATE FACIES PATTERNS AND DIAGENESIS-THE KEY TO THE GIPPSLAND BASIN 'VELOCITY PROBLEM'

1998 ◽  
Vol 38 (1) ◽  
pp. 137 ◽  
Author(s):  
D.A. Feary ◽  
T.S. Loutit

Throughout much of the exploration history of the offshore Gippsland Basin it has been difficult to achieve acceptable accuracy or precision for time-depth conversions beneath the stratigraphically and sonically complex Seaspray Group, overlying exploration targets within the hydrocarbon-rich Latrobe Group. A regional seismic stratigraphic and seismic attribute analysis of the Oligocene-Recent Seaspray Group has been carried out as the first step towards resolving this long-standing Gippsland Basin 'velocity problem'.High-resolution 2D seismic reflection data and downhole logs were used to determine the depositional history and sequence characteristics of the Seaspray Group. This analysis was based on the premise that velocity variation must be related to, or controlled by, the nature and distribution of the dominantly cool-water carbonate facies of the Seaspray Group, and that solution of the velocity problem must be based on understanding the particular depositional and geochemical characteristics of cool-water carbonates.Detailed seismic stratigraphic analysis of the G92A dataset shows that the 16 unconformity-bounded seismic sequences within the Seaspray Group form four mega-sequences, each separated by major erosional (channel-cutting) events, with sequences reflecting variable sediment inputs from northeasterly and southwesterly sources. Seaspray Group characteristics result from interaction of complex depositional and post-depositional processes, including river incision, submarine canyon erosion, slumping, subaerial exposure, karstification, and subsurface diagenesis and erosion. Seismic attribute analysis records the variability of diagenesis and shows that diagenetic effects are predominantly concentrated along sequence boundaries, sometimes to significant depths below the sequence boundary.Results to date indicate that application of a velocity model based on this new interpretation will enable improved precision of depth estimates to the top Latrobe Group unconformity to less than five per cent.

2021 ◽  
Author(s):  
Nan Wu ◽  
Harya Nugraha ◽  
Michael Steventon ◽  
Fa Zhong

The architecture of canyon-fills can provide a valuable record of the link between tectonics, sedimentation, and depositional processes in submarine settings. We integrate 3D and 2D seismic reflection data to investigate the dominant tectonics and sedimentary processes involved in the formation of two deeply buried (c. 500 m below seafloor), and large (c. 3-6 km wide, >35 km long) Late Miocene submarine canyons. We found the plate tectonic-scale events (i.e. continental breakup and shortening) have a first-order influence on the submarine canyon initiation and evolution. Initially, the Late Cretaceous (c. 65 Ma) separation of Australia and Antarctica resulted in extensional fault systems, which then formed stair-shaped paleo-seabed. This inherited seabed topography allowed gravity-driven processes (i.e. turbidity currents and mass-transport complexes) to occur. Subsequently, the Late Miocene (c. 5 Ma) collision of Australia and Eurasia, and the resulting uplift and exhumation, have resulted in a prominent unconformity surface that coincides with the base of the canyons. We suggest that the Late Miocene intensive tectonics and associated seismicity have resulted in instability in the upper slope that consequently gave rise to emplacement of MTCs, initiating the canyons formation. Therefore, we indicate that regional tectonics play a key role in the initiation and development of submarine canyons.


2019 ◽  
Author(s):  
Maurizio Ercoli ◽  
Emanuele Forte ◽  
Massimiliano Porreca ◽  
Ramon Carbonell ◽  
Cristina Pauselli ◽  
...  

Abstract. In seismotectonic studies, seismic reflection data are a powerful tool to unravel the complex deep architecture of active faults. Such tectonic structures are usually mapped at surface through traditional geological surveying whilst seismic reflection data may help to trace their continuation from the near-surface down to hypocentral depth. In this study, we propose the application of the seismic attributes technique, commonly used in seismic reflection exploration by oil industry, to seismotectonic research for the first time. The study area is a geologically complex region of Central Italy, recently struck by a long-lasting seismic sequence including a Mw 6.5 main-shock. A seismic reflection data-set consisting of three vintage seismic profiles, currently the only available across the epicentral zone, constitutes a singular opportunity to attempt a seismic attribute analysis. This analysis resulted in peculiar seismic signatures which generally correlate with the exposed surface geologic features, and also confirming the presence of other debated structures. These results are critical, because provide information also on the relatively deep structural setting, mapping a prominent, high amplitude regional reflector that marks the top basement, interpreted as important rheological boundary. Complex patterns of high-angle discontinuities crossing the reflectors have been also identified. These dipping fabrics are interpreted as the expression of fault zones, belonging to the active normal fault systems responsible for the seismicity of the region. This work demonstrates that seismic attribute analysis, even if used on low-quality vintage 2D data, may contribute to improve the subsurface geological interpretation of areas characterized by high seismic potential.


Sedimentology ◽  
2000 ◽  
Vol 47 (4) ◽  
pp. 851-881 ◽  
Author(s):  
Jeff J. Lukasik ◽  
Noel P. James ◽  
Brian McGowran ◽  
Yvonne Bone

2010 ◽  
Vol 29 (8) ◽  
pp. 896-901 ◽  
Author(s):  
Hadi Nourollah ◽  
Jeff Keetley ◽  
Geoffrey O'Brien

Sedimentology ◽  
2000 ◽  
Vol 47 (6) ◽  
pp. 1235-1235
Author(s):  
Jeff J. Lukasik ◽  
Noel P. James ◽  
Brian Mcgowran ◽  
Yvonne Bone

Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 329-348 ◽  
Author(s):  
Maurizio Ercoli ◽  
Emanuele Forte ◽  
Massimiliano Porreca ◽  
Ramon Carbonell ◽  
Cristina Pauselli ◽  
...  

Abstract. In seismotectonic studies, seismic reflection data are a powerful tool to unravel the complex deep architecture of active faults. Such tectonic structures are usually mapped at the surface through traditional geological surveying, whilst seismic reflection data may help to trace their continuation from the near surface down to hypocentral depths. On seismic reflection data, seismic attributes are commonly used by the oil and gas industry to aid exploration. In this study, we propose using seismic attributes in seismotectonic research for the first time. The study area is a geologically complex region of central Italy, struck during 2016–2017 by a long-lasting seismic sequence, including a Mw 6.5 main shock. Three vintage seismic reflection profiles are currently the only ones available at the regional scale across the epicentral zone. These represent a singular opportunity to attempt a seismic attribute analysis by running attributes like the “energy” and the “pseudo-relief”. Our results are critical, as they provide information on the relatively deep structural setting, mapping a prominent, high-amplitude regional reflector interpreted as the top of basement, which is an important rheological boundary. Complex patterns of high-angle discontinuities crossing the reflectors have also been identified by seismic attributes. These steeply dipping fabrics are interpreted as the expression of fault zones belonging to the active normal fault systems responsible for the seismicity of the region. Such peculiar seismic signatures of faulting are consistent with the principal geological and tectonic structures exposed at surface. In addition, we also provide convincing evidence of an important primary tectonic structure currently debated in the literature (the Norcia antithetic fault) as well as several buried secondary fault splays. This work demonstrates that seismic attribute analysis, even if used on low-quality vintage 2D data, may contribute to improving the subsurface geological interpretation in areas characterized by limited and/or low-quality subsurface data but with potentially high seismic hazard.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1996-1998
Author(s):  
Miodrag M. Roksandić

The paper deals with the results of a multidisciplinary study of the Bend Conglomerate (Middle Pennsylvanian fluvio‐deltaic clastics) in a portion of Boonsville gas field in the Fort Worth Basin of North‐Central Texas, especially with those related to the Caddo sequence, at the top of the Bend Conglomerate. The purpose of the study was “to determine how modern geophysical, geological, and engineering techniques could be combined to understand the mechanisms by which fluvio‐deltaic depositional processes create reservoir compartmentalization in a low‐ to moderate‐accommodation basin.” According to Hardage et al. (1996), complexly arranged key chronostratigraphic surfaces are major controls on compartmentalization and architecture of reservoirs. These key chronostratigraphic surfaces are flooding surfaces, maximum flooding surfaces, and erosion surfaces.


2007 ◽  
Author(s):  
Srinivasa Rao Narhari ◽  
Nikhil Banik ◽  
Sunil Kumar Singh ◽  
Talal Fahad Al-Adwani

Sign in / Sign up

Export Citation Format

Share Document