scholarly journals Horizontal or vertical? Camera trap orientations and recording modes for detecting potoroos, bandicoots and pademelons

2014 ◽  
Vol 36 (1) ◽  
pp. 60 ◽  
Author(s):  
Brendan D. Taylor ◽  
Ross L. Goldingay ◽  
John M. Lindsay

Camera traps can detect rare and cryptic species, and may enable description of the stability of populations of threatened species. We investigated the relative performance of cameras oriented horizontally or vertically, and recording mode (still and video) to detect the vulnerable long-nosed potoroo (Potorous tridactylus) as a precursor to population monitoring. We established camera traps for periods of 13–21 days across 21 sites in Richmond Range National Park in north-east New South Wales. Each camera trap set consisted of three KeepGuard KG680V cameras directed at a bait container – one horizontal and one vertical camera in still mode and one horizontal camera in video mode. Potoroos and bandicoots (Perameles nasuta and Isoodon macrourus) were detected at 14 sites and pademelons (Thylogale stigmatica and T. thetis) were detected at 19 sites. We used program Presence to compare detection probabilities for each camera category. The detection probability for all three taxa groups was lowest for the vertical still and similar for the horizontal cameras. The detection probability (horizontal still) was highest for the potoroos (0.43) compared with the bandicoots (0.16) and pademelons (0.25). We estimate that the horizontal stills camera could achieve a 95% probability of detection of a potoroo within 6 days compared with 8 days using a vertical stills camera. This suggests that horizontal cameras in still mode have great potential for monitoring the dynamics of this potoroo population.

2016 ◽  
Vol 22 (1) ◽  
pp. 48 ◽  
Author(s):  
Nigel Cotsell ◽  
Karl Vernes

This is the first comprehensive camera trap study to examine hollow usage by wildlife in the canopy of trees. Eighty cameras directed at tree hollows were deployed across eight sites in nine species of eucalypt in north-east New South Wales. In total, 38 species (including 21 birds, 9 mammals and 8 reptiles) were recorded at hollow entrances over a three-month period. There was a significant difference between wildlife hollow usage associated with site disturbance and tree growth stage (ANOSIM, P > 0.05); however, there was no significant difference associated with tree hollow diameter (ANOSIM, P > 0.05). The level of anthropogenic disturbance at each site, including vegetation modification of the understorey, was a significant predictor of species presence. Despite the limitations of using camera traps in the canopy of trees this study demonstrates the potential to garner useful insights into the ecology and behaviour of arboreal wildlife.


2017 ◽  
Vol 23 (3) ◽  
pp. 302 ◽  
Author(s):  
Paul D. Meek ◽  
Jason Wishart

Camera traps provide a novel and quasicovert method of gathering information on animal behaviour that may otherwise remain undetected without sophisticated and expensive filming equipment. In a rangelands pest management project at Mt Hope in the central west of New South Wales, Australia, we recorded foxes seemingly hunting kangaroos on three occasions. While we did not record direct instances of predation, our observations provide camera trap photographic evidence suggesting that foxes will attempt to tackle mammals above the critical weight range, including large macropod species such as western grey kangaroos.


2012 ◽  
Vol 34 (2) ◽  
pp. 196 ◽  
Author(s):  
Justine K. Smith ◽  
Graeme Coulson

Camera traps are increasingly used to monitor wildlife that is otherwise difficult to study. Traditionally, camera traps are set aimed horizontally towards a scent lure, capturing images of animals as they move past. A vertical camera orientation is also being used, whereby the camera lens and sensor face vertically down towards the scent lure, capturing images from above. We aimed to compare detection of southern brown bandicoots and long-nosed potoroos by camera traps set horizontally, to those set vertically. We also considered the number of false triggers and ease of species identification. Over 21 nights, we monitored 18 camera stations, each consisting of one PixController Inc. DigitalEye™ 7.2 camera aimed horizontally and one vertically, towards the same scent lure. We used PRESENCE (Version 3.0 (Beta)) to estimate detection probabilities for the two species, comparing a null model to a model with camera orientation as a covariate affecting probability of detection. Detection probabilities for both species was 2–5 times higher by vertical than by horizontal cameras, with no significant difference in false triggers. Vertical cameras also increased ease of species identification. Vertical camera orientation is shown to be superior in our study system, providing a valid alternative method.


2005 ◽  
Vol 53 (3) ◽  
pp. 185 ◽  
Author(s):  
B. D. Lewis ◽  
R. L. Goldingay

The literature on the population ecology of Australian frogs provides relatively few accounts of population monitoring. This has hampered our ability to understand how frog populations respond to dynamic rainfall patterns and to determine the stability of populations of threatened frog species. We conducted biannual monitoring of the wallum sedge frog (Litoria olongburensis) along transects at 10 sites over a 4-year period (1996–2000). We recorded six environmental parameters to assess their influence on our population indices. Monitoring of transects indicated that populations were rarely stable and fluctuated from year to year. Counts of adults were negatively influenced by rain during the previous day but positively influenced by rain during the previous week. This suggests that timing of recent rainfall has a differing influence on habitat use by adult frogs. Counts of adults were also significantly influenced by site and census period. Numbers of juveniles were influenced by rain during the previous three months, which may suggest that successful recruitment depends on higher water levels in the sedge swamps. Counts of juveniles were also significantly influenced by census period. Our analysis reveals that, after controlling for the influence of rainfall, the number of adult frogs per census varied between 10 and 20 per transect. The number of juveniles varied between 5 and 15 per transect per census. We conclude that the wallum sedge frog across the geographic range of our sites was not in decline during our monitoring period. In light of our findings we provide a review on population monitoring of Australian frogs.


2019 ◽  
Vol 41 (2) ◽  
pp. 283 ◽  
Author(s):  
Stephanie K. Courtney Jones ◽  
Katarina M. Mikac

Activity levels of spotted-tailed quolls were investigated using camera traps over 12 months. There were 33 independent camera trap photos with 17 individual quolls identified. Latency to initial detection was 40 days. Quolls were nocturnal/crepuscular, spending 35% of the day they were detected active. Highest activity levels were recorded in summer.


2016 ◽  
Vol 64 (6) ◽  
pp. 413 ◽  
Author(s):  
Ross L. Goldingay ◽  
Darren McHugh ◽  
Jonathan L. Parkyn

Population monitoring is fundamental to the conservation of threatened species. This study aimed to develop an effective approach for long-term monitoring of the yellow-bellied glider (Petaurus australis) in north-east New South Wales. We conducted repeat surveys to account for imperfect detection and used counts in abundance modelling to produce indices of abundance. We used simulations to explore refinements to our study design. Surveys over three consecutive years produced 195 detections with >95% of detections by call. The probability of detection varied across years and survey occasions, ranging from 0.22 to 0.71. Abundance estimates were remarkably constant across years, ranging from 2.3 ± 0.5 to 2.4 ± 0.6 individuals per site. Occupancy estimates were also constant across years (0.90–0.91). Simulations were run to investigate the influence of the number of surveys (2 or 3) and the number of survey sites (20, 40 or 50) on the probability of occupancy. The design that reduced bias and provided an adequate improvement to precision was that of three visits to 40 survey sites. This design should be adequate to detect a decline in population abundance. Further studies of this kind are needed to better understand the population dynamics of this species.


2021 ◽  
Vol 11 (5) ◽  
pp. 2198
Author(s):  
Junwoo Jung ◽  
Jaesung Lim ◽  
Sungyeol Park ◽  
Haengik Kang ◽  
Seungbok Kwon

A frequency hopping orthogonal frequency division multiple access (FH-OFDMA) can provide low probability of detection (LPD) and anti-jamming capabilities to users against adversary detectors. To obtain an extreme LPD capability that cannot be provided by the basic symbol-by-symbol (SBS)-based FH pattern, we proposed two FH patterns, namely chaotic standard map (CSM) and cat map for FH-OFDMA systems. In our previous work, through analysis of complexity to regenerate the transmitted symbol sequence, at the point of adversary detectors, we found that the CSM had a lower probability of intercept than the cat map and SBS. It is possible when a detector already knows symbol and frame structures, and the detector has been synchronized to the FH-OFDMA system. Unlike the previous work, here, we analyze whether the CSM provides greater LPD capability than the cat map and SBS by detection probability using spectrum sensing technique. We analyze the detection probability of the CSM and provide detection probabilities of the cat map and SBS compared to the CSM. Based on our analysis of the detection probability and numerical results, it is evident that the CSM provides greater LPD capability than both the cat map and SBS-based FH-OFDMA systems.


1994 ◽  
Vol 17 (1) ◽  
pp. 19
Author(s):  
J. Barker ◽  
D. Lunney ◽  
T. Bubela

Mammal surveys were carried out on the Carrai Plateau and Richmond Range in north-east New South Wales between March 1988 and November 1989. The emphasis was placed on rainforest mammals, following the recognition by Adam ( 1987) that the species lists of mammals in the state's rainforests were incomplete and that more research was needed. The mammals were surveyed primarily by analysis of prey remains in Dog and Fox scats, collected from roads throughout the forests, and from bat trapping. The bat fauna at both the Carrai Plateau and Richmond Range is rich (1 0 species and nine species respectively, including the rare Golden-tipped Bat, Kerivoula papuensis, in the Richmond Range). Scat analysis revealed the presence of 24 native species on the Carrai Plateau, and on the Richmond Range there were 17 species, including high numbers of two pademelon species. Feral prey species are almost completely absent, although the Fox is an established predator in both areas. A sharp division was identified between the mammal faunas of closed and open forests. Differences were found also between the mammal fauna composition of the two rainforest sites, and with those of nearby eucalypt forests. The mammal fauna of New South Wales rainforests is distinct from open forests and future mammal surveys are needed to ensure an adequate level of knowledge to identify and conserve these areas.


2018 ◽  
Vol 40 (1) ◽  
pp. 118 ◽  
Author(s):  
Bronwyn A. Fancourt ◽  
Mark Sweaney ◽  
Don B. Fletcher

Camera traps are being used increasingly for wildlife management and research. When choosing camera models, practitioners often consider camera trigger speed to be one of the most important factors to maximise species detections. However, factors such as detection zone will also influence detection probability. As part of a rabbit eradication program, we performed a pilot study to compare rabbit (Oryctolagus cuniculus) detections using the Reconyx PC900 (faster trigger speed, narrower detection zone) and the Ltl Acorn Ltl-5310A (slower trigger speed, wider detection zone). Contrary to our predictions, the slower-trigger-speed cameras detected rabbits more than twice as often as the faster-trigger-speed cameras, suggesting that the wider detection zone more than compensated for the relatively slower trigger time. We recommend context-specific field trials to ensure cameras are appropriate for the required purpose. Missed detections could lead to incorrect inferences and potentially misdirected management actions.


Sign in / Sign up

Export Citation Format

Share Document