Fur seals and sea lions (family Otariidae) on the breakwaters at Adelaide

2018 ◽  
Vol 40 (2) ◽  
pp. 157
Author(s):  
Peter D. Shaughnessy ◽  
Mike Bossley ◽  
A. O. Nicholls

Long-nosed fur seals (Arctocephalus forsteri) and Australian sea lions (Neophoca cinerea) on the breakwaters at the mouth of the Port River estuary at Adelaide’s Outer Harbor were counted from 2004 to 2015. Observed counts were modelled using a generalised linear model. Fur seal numbers have been increasing since 2011; for sea lions there was a small discernible annual trend in counts. Counts of fur seals varied seasonally; most annual maxima were in August or September with modelled peak numbers around 9–11 September. The maximum count of fur seals was 79 in September 2015. For sea lions, the model predicts annual peaks in the period 28 August to 19 September. The maximum count of sea lions was nine in September 2009. The haulout sites on the Outer Harbor breakwaters are easily accessible by boats, including pleasure craft. In particular, the seaward end of the outer breakwater is a popular spot with recreational anglers whose lines are often within a few metres of the seals. We propose that a management plan should be developed involving a study of the effect of boat approaches on seals utilising the Outer Harbor area followed by education coupled with enforcement.

2010 ◽  
Vol 58 (2) ◽  
pp. 94 ◽  
Author(s):  
Peter D. Shaughnessy ◽  
Jane McKenzie ◽  
Melanie L. Lancaster ◽  
Simon D. Goldsworthy ◽  
Terry E. Dennis

Australian fur seals (Arctocephalus pusillus doriferus) breed on Bass Strait islands in Victoria and Tasmania. They have been recorded in South Australia (SA) for many years as non-breeding visitors and on Kangaroo Island frequently since 1988, mostly in breeding colonies of the New Zealand fur seal (A. forsteri) which is the most numerous pinniped in SA. Australian fur seals have displaced New Zealand fur seals from sections of the Cape Gantheaume colony on Kangaroo Island. North Casuarina Island produced 29 Australian fur seal pups in February 2008. Australian fur seal pups were larger than New Zealand fur seal pups in the same colony and have been identified genetically using a 263-bp fragment of the mitochondrial DNA control region. North Casuarina Island has been an important breeding colony of New Zealand fur seals, but pup numbers there decreased since 1992–93 (contrary to trends in SA for New Zealand fur seals), while numbers of Australian fur seals there have increased. This study confirms that Australian fur seals breed in SA. The two fur seal species compete for space onshore at several sites. Australian fur seals may compete for food with endangered Australian sea lions (Neophoca cinerea) because both are bottom feeders.


2005 ◽  
Vol 32 (1) ◽  
pp. 85 ◽  
Author(s):  
P. D. Shaughnessy ◽  
T. E. Dennis ◽  
P. G. Seager

Two seal species breed on the west coast of South Australia, the Australian sea lion, Neophoca cinerea, and the New Zealand fur seal, Arctocephalus forsteri. Aerial surveys were conducted at intervals of ~3 months between April 1995 and June 1997 to determine the breeding status of sea lions and timing of pupping seasons. Ground surveys between October 1994 and April 2004 aimed at counting sea lions and fur seals, particularly pups. In all, 27 sites were examined. Six new sea lion breeding colonies were documented, at Four Hummocks, Price, North Rocky, Dorothee, West Waldegrave and Nicolas Baudin Islands. All were found or confirmed by ground survey. Pup numbers were equivalent to 12% of the total number of pups estimated in surveys conducted from 1987 to 1992, but primarily in 1990. The sighting of brown pups on aerial surveys of Ward Island, Middle and Western Nuyts Reef supports earlier indications, based on dead pups, that they are breeding colonies. The timing of pupping seasons is not synchronous; estimates are presented for colonies between 1995 and early in 2004, with predictions to the end of 2005. The abundance estimates of sea lion pups highlight the importance of visiting a colony early in the pupping season to determine when pupping begins and ~5 months later when the maximum number of pups is expected. For the New Zealand fur seal, small numbers of pups were recorded at Dorothee, West Waldegrave and Nicolas Baudin Islands, and at Nuyts Reef. These and the previously unknown sea lion breeding colonies on the west coast of South Australia suggest that further colonies may remain to be documented. Because planning for aquaculture ventures is active in South Australia, it is important that the localities and status of sea lion and fur seal colonies be established unequivocally to ensure that the need for Prohibited Area status for islands with breeding colonies and for Marine Protected Areas around them is noted.


Author(s):  
Roger Kirkwood ◽  
Simon Goldsworthy

Fur seals and sea lions are charismatic, large carnivores that engage us with both their skill and playful antics. Although all species in Australian waters were harvested to near extinction 200 years ago, fur seals are recovering and are now common in near-shore waters across southern Australia. Sea lions, however, are endangered. Their populations appear not to have recovered like fur seals and are declining at some locations. Fur seals and sea lions are important top level predators and play an important role in Australia’s temperate marine ecosystems. Key threats they currently face relate to human activities, particularly interactions with fisheries. This book outlines the comparative evolutionary ecology, biology, life-history, behaviour, conservation status, threats, history of human interactions and latest research on the three species of otariids that live in the waters of southern Australia: the Australian fur seal, New Zealand fur seal and Australian sea lion. It also includes brief descriptions of Antarctic and Subantarctic seals that occupy the Antarctic pack-ice and remote Australian territories of Macquarie Island and Heard Island.


2021 ◽  
Vol 376 (1830) ◽  
pp. 20200219 ◽  
Author(s):  
Sascha K. Hooker ◽  
Russel D. Andrews ◽  
John P. Y. Arnould ◽  
Marthán N. Bester ◽  
Randall W. Davis ◽  
...  

Management of gases during diving is not well understood across marine mammal species. Prior to diving, phocid (true) seals generally exhale, a behaviour thought to assist with the prevention of decompression sickness. Otariid seals (fur seals and sea lions) have a greater reliance on their lung oxygen stores, and inhale prior to diving. One otariid, the Antarctic fur seal ( Arctocephalus gazella ), then exhales during the final 50–85% of the return to the surface, which may prevent another gas management issue: shallow-water blackout. Here, we compare data collected from animal-attached tags (video cameras, hydrophones and conductivity sensors) deployed on a suite of otariid seal species to examine the ubiquity of ascent exhalations for this group. We find evidence for ascent exhalations across four fur seal species, but that such exhalations are absent for three sea lion species. Fur seals and sea lions are no longer genetically separated into distinct subfamilies, but are morphologically distinguished by the thick underfur layer of fur seals. Together with their smaller size and energetic dives, we suggest their air-filled fur might underlie the need to perform these exhalations, although whether to reduce buoyancy and ascent speed, for the avoidance of shallow-water blackout or to prevent other cardiovascular management issues in their diving remains unclear. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part I)’.


1999 ◽  
Vol 47 (2) ◽  
pp. 193 ◽  
Author(s):  
B. Bodley ◽  
the late J. R. Mercer ◽  
M. M. Bryden

The inert marker titanium dioxide was added to the food of two male New Zealand fur seals (Arctocephalus forsteri) and three Australian sea lions (Neophoca cinerea) in Taronga Zoo, Sydney, in a series of 15 trials. The enclosures were checked constantly during daylight hours, and defaecation times and location of samples noted. Samples were collected at feeding times, at approximately 0930, 1300 and 1500 hours. During the night the animals were checked at 30-min intervals, the location of samples noted, and samples collected at the first feeding time next morning. Faecal collections were made for up to 50 h after dosing. Marker concentrations in faecal dry matter were determined and mean retention times calculated from the mean concentration-time curves. The mean time between dosing and first recovery of marker (Initial Recovery Time) was 4 h for A. forsteri and 6.5 h for N. cinerea. Mean retention time, a better index of rate of passage of digesta, was 14.6 h for A. forsteri and 14.9 h for N. cinerea. Thus, the marker concentration curves indicated a rapid rate of food transit through the gastrointestinal tract, as has been observed in several (but not all) pinniped species.


2015 ◽  
Vol 11 (2) ◽  
pp. 20140835 ◽  
Author(s):  
Robert W. Boessenecker ◽  
Morgan Churchill

The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5–6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta , from the lower middle Miocene ‘Topanga’ Formation (15–17.1 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between ‘enaliarctine’ stem pinnipedimorphs (16.6–27 Ma) and previously described otariid fossils (7.3–12.5 Ma), as well as morphologically intermediate by retaining an M 2 and a reduced M 1 metaconid cusp and lacking P 2–4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an ‘enaliarctine’-like ancestor.


1999 ◽  
Vol 77 (8) ◽  
pp. 1204-1216 ◽  
Author(s):  
Thomas Dellinger ◽  
Fritz Trillmich

Analysis of fish otoliths in scats and vomits of Galápagos fur seals (Arctocephalus galapagoensis) and Galápagos sea lions (Zalophus californianus wollebaeki) was used to determine the numerical composition of the diets for the post-El Niño year 1983, the cold seasons in 1984 and 1985, and the warm season in 1986. Between 84 and 99% of all otoliths in fur seal scats were from myctophids and bathylagids. The fur seals' diet included 26 species. Only 3 species contributed more than 1% of otoliths. No seasonal differences in diet were found. Sea lion samples contained a mean of 14 otoliths. Sardines (Sardinops sagax) contributed 75-85% of otoliths. Sea lions preyed on 24 species, but only 3 surpassed 1% abundance. Seasonality was not reflected in the sea lions' diet. After the 1982-1983 El Niño, the diets of both species deviated from those in all other years of the study. Food-niche overlap between the two sympatric species was almost non-existent. This is hard to understand, based on our knowledge of the diving capabilities of the two species, but reflects the fact that Galápagos fur seals are nighttime foragers and sea lions are daytime foragers.


2017 ◽  
Vol 13 (11) ◽  
pp. 20170444 ◽  
Author(s):  
Kaja Wierucka ◽  
Benjamin J. Pitcher ◽  
Robert Harcourt ◽  
Isabelle Charrier

Parental care is an important factor influencing offspring survival and adult reproductive success in many vertebrates. Parent–offspring recognition ensures care is only directed to filial young, avoiding the costs of misallocated resource transfer. It is essential in colonial mammal species, such as otariids (fur seals and sea lions), in which repeated mother–offspring separations increase the risk of misdirecting maternal effort. Identification of otariid pups by mothers is known to be multi-modal, yet the role of visual cues in this process remains uncertain. We used three-dimensional visual models to investigate the importance of visual cues in maternal recognition of pups in Australian sea lions ( Neophoca cinerea ). We showed that the colour pattern of pup pelage in the absence of any other sensory cues served to attract the attention of females and prompt investigation. Furthermore, females were capable of accurately distinguishing between models imitating the age-class of their own pup and those resembling older or younger age-classes. Our results suggest that visual cues facilitate age-class discrimination of pups by females and so are likely to play an important role in mother–pup reunions and recognition in otariid species.


2017 ◽  
Author(s):  
Robert Boessenecker ◽  
Morgan Churchill

The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5-6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta, from the early middle Miocene “Topanga” Formation (15-17.5 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between “enaliarctine” stem pinnipedimorphs (16.6-27 Ma) and previously described otariid fossils (7.3-12.5 Ma), as well as morphologically intermediate by retaining an M2 and a reduced M1 metaconid cusp and lacking P2-4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an “enaliarctine”-like ancestor.


Sign in / Sign up

Export Citation Format

Share Document