scholarly journals The role of visual cues in mother–pup reunions in a colonially breeding mammal

2017 ◽  
Vol 13 (11) ◽  
pp. 20170444 ◽  
Author(s):  
Kaja Wierucka ◽  
Benjamin J. Pitcher ◽  
Robert Harcourt ◽  
Isabelle Charrier

Parental care is an important factor influencing offspring survival and adult reproductive success in many vertebrates. Parent–offspring recognition ensures care is only directed to filial young, avoiding the costs of misallocated resource transfer. It is essential in colonial mammal species, such as otariids (fur seals and sea lions), in which repeated mother–offspring separations increase the risk of misdirecting maternal effort. Identification of otariid pups by mothers is known to be multi-modal, yet the role of visual cues in this process remains uncertain. We used three-dimensional visual models to investigate the importance of visual cues in maternal recognition of pups in Australian sea lions ( Neophoca cinerea ). We showed that the colour pattern of pup pelage in the absence of any other sensory cues served to attract the attention of females and prompt investigation. Furthermore, females were capable of accurately distinguishing between models imitating the age-class of their own pup and those resembling older or younger age-classes. Our results suggest that visual cues facilitate age-class discrimination of pups by females and so are likely to play an important role in mother–pup reunions and recognition in otariid species.

2008 ◽  
Vol 275 (1651) ◽  
pp. 2539-2545 ◽  
Author(s):  
Hannah M Rowland ◽  
Innes C Cuthill ◽  
Ian F Harvey ◽  
Michael P Speed ◽  
Graeme D Ruxton

Perception of the body's outline and three-dimensional shape arises from visual cues such as shading, contour, perspective and texture. When a uniformly coloured prey animal is illuminated from above by sunlight, a shadow may be cast on the body, generating a brightness contrast between the dorsal and ventral surfaces. For animals such as caterpillars, which live among flat leaves, a difference in reflectance over the body surface may degrade the degree of background matching and provide cues to shape from shading. This may make otherwise cryptic prey more conspicuous to visually hunting predators. Cryptically coloured prey are expected to match their substrate in colour, pattern and texture (though disruptive patterning is an exception), but they may also abolish self-shadowing and therefore either reduce shape cues or maintain their degree of background matching through countershading: a gradation of pigment on the body of an animal so that the surface closest to illumination is darker. In this study, we report the results from a series of field experiments where artificial prey resembling lepidopteran larvae were presented on the upper surfaces of beech tree branches so that they could be viewed by free-living birds. We demonstrate that countershading is superior to uniform coloration in terms of reducing attack by free-living predators. This result persisted even when we fixed prey to the underside of branches, simulating the resting position of many tree-living caterpillars. Our experiments provide the first demonstration, in an ecologically valid visual context, that shadowing on bodies (such as lepidopteran larvae) provides cues that visually hunting predators use to detect potential prey species, and that countershading counterbalances shadowing to enhance cryptic protection.


2021 ◽  
Vol 376 (1830) ◽  
pp. 20200219 ◽  
Author(s):  
Sascha K. Hooker ◽  
Russel D. Andrews ◽  
John P. Y. Arnould ◽  
Marthán N. Bester ◽  
Randall W. Davis ◽  
...  

Management of gases during diving is not well understood across marine mammal species. Prior to diving, phocid (true) seals generally exhale, a behaviour thought to assist with the prevention of decompression sickness. Otariid seals (fur seals and sea lions) have a greater reliance on their lung oxygen stores, and inhale prior to diving. One otariid, the Antarctic fur seal ( Arctocephalus gazella ), then exhales during the final 50–85% of the return to the surface, which may prevent another gas management issue: shallow-water blackout. Here, we compare data collected from animal-attached tags (video cameras, hydrophones and conductivity sensors) deployed on a suite of otariid seal species to examine the ubiquity of ascent exhalations for this group. We find evidence for ascent exhalations across four fur seal species, but that such exhalations are absent for three sea lion species. Fur seals and sea lions are no longer genetically separated into distinct subfamilies, but are morphologically distinguished by the thick underfur layer of fur seals. Together with their smaller size and energetic dives, we suggest their air-filled fur might underlie the need to perform these exhalations, although whether to reduce buoyancy and ascent speed, for the avoidance of shallow-water blackout or to prevent other cardiovascular management issues in their diving remains unclear. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part I)’.


2018 ◽  
Vol 40 (2) ◽  
pp. 157
Author(s):  
Peter D. Shaughnessy ◽  
Mike Bossley ◽  
A. O. Nicholls

Long-nosed fur seals (Arctocephalus forsteri) and Australian sea lions (Neophoca cinerea) on the breakwaters at the mouth of the Port River estuary at Adelaide’s Outer Harbor were counted from 2004 to 2015. Observed counts were modelled using a generalised linear model. Fur seal numbers have been increasing since 2011; for sea lions there was a small discernible annual trend in counts. Counts of fur seals varied seasonally; most annual maxima were in August or September with modelled peak numbers around 9–11 September. The maximum count of fur seals was 79 in September 2015. For sea lions, the model predicts annual peaks in the period 28 August to 19 September. The maximum count of sea lions was nine in September 2009. The haulout sites on the Outer Harbor breakwaters are easily accessible by boats, including pleasure craft. In particular, the seaward end of the outer breakwater is a popular spot with recreational anglers whose lines are often within a few metres of the seals. We propose that a management plan should be developed involving a study of the effect of boat approaches on seals utilising the Outer Harbor area followed by education coupled with enforcement.


1999 ◽  
Vol 47 (2) ◽  
pp. 193 ◽  
Author(s):  
B. Bodley ◽  
the late J. R. Mercer ◽  
M. M. Bryden

The inert marker titanium dioxide was added to the food of two male New Zealand fur seals (Arctocephalus forsteri) and three Australian sea lions (Neophoca cinerea) in Taronga Zoo, Sydney, in a series of 15 trials. The enclosures were checked constantly during daylight hours, and defaecation times and location of samples noted. Samples were collected at feeding times, at approximately 0930, 1300 and 1500 hours. During the night the animals were checked at 30-min intervals, the location of samples noted, and samples collected at the first feeding time next morning. Faecal collections were made for up to 50 h after dosing. Marker concentrations in faecal dry matter were determined and mean retention times calculated from the mean concentration-time curves. The mean time between dosing and first recovery of marker (Initial Recovery Time) was 4 h for A. forsteri and 6.5 h for N. cinerea. Mean retention time, a better index of rate of passage of digesta, was 14.6 h for A. forsteri and 14.9 h for N. cinerea. Thus, the marker concentration curves indicated a rapid rate of food transit through the gastrointestinal tract, as has been observed in several (but not all) pinniped species.


2010 ◽  
Vol 58 (2) ◽  
pp. 94 ◽  
Author(s):  
Peter D. Shaughnessy ◽  
Jane McKenzie ◽  
Melanie L. Lancaster ◽  
Simon D. Goldsworthy ◽  
Terry E. Dennis

Australian fur seals (Arctocephalus pusillus doriferus) breed on Bass Strait islands in Victoria and Tasmania. They have been recorded in South Australia (SA) for many years as non-breeding visitors and on Kangaroo Island frequently since 1988, mostly in breeding colonies of the New Zealand fur seal (A. forsteri) which is the most numerous pinniped in SA. Australian fur seals have displaced New Zealand fur seals from sections of the Cape Gantheaume colony on Kangaroo Island. North Casuarina Island produced 29 Australian fur seal pups in February 2008. Australian fur seal pups were larger than New Zealand fur seal pups in the same colony and have been identified genetically using a 263-bp fragment of the mitochondrial DNA control region. North Casuarina Island has been an important breeding colony of New Zealand fur seals, but pup numbers there decreased since 1992–93 (contrary to trends in SA for New Zealand fur seals), while numbers of Australian fur seals there have increased. This study confirms that Australian fur seals breed in SA. The two fur seal species compete for space onshore at several sites. Australian fur seals may compete for food with endangered Australian sea lions (Neophoca cinerea) because both are bottom feeders.


2005 ◽  
Vol 32 (1) ◽  
pp. 85 ◽  
Author(s):  
P. D. Shaughnessy ◽  
T. E. Dennis ◽  
P. G. Seager

Two seal species breed on the west coast of South Australia, the Australian sea lion, Neophoca cinerea, and the New Zealand fur seal, Arctocephalus forsteri. Aerial surveys were conducted at intervals of ~3 months between April 1995 and June 1997 to determine the breeding status of sea lions and timing of pupping seasons. Ground surveys between October 1994 and April 2004 aimed at counting sea lions and fur seals, particularly pups. In all, 27 sites were examined. Six new sea lion breeding colonies were documented, at Four Hummocks, Price, North Rocky, Dorothee, West Waldegrave and Nicolas Baudin Islands. All were found or confirmed by ground survey. Pup numbers were equivalent to 12% of the total number of pups estimated in surveys conducted from 1987 to 1992, but primarily in 1990. The sighting of brown pups on aerial surveys of Ward Island, Middle and Western Nuyts Reef supports earlier indications, based on dead pups, that they are breeding colonies. The timing of pupping seasons is not synchronous; estimates are presented for colonies between 1995 and early in 2004, with predictions to the end of 2005. The abundance estimates of sea lion pups highlight the importance of visiting a colony early in the pupping season to determine when pupping begins and ~5 months later when the maximum number of pups is expected. For the New Zealand fur seal, small numbers of pups were recorded at Dorothee, West Waldegrave and Nicolas Baudin Islands, and at Nuyts Reef. These and the previously unknown sea lion breeding colonies on the west coast of South Australia suggest that further colonies may remain to be documented. Because planning for aquaculture ventures is active in South Australia, it is important that the localities and status of sea lion and fur seal colonies be established unequivocally to ensure that the need for Prohibited Area status for islands with breeding colonies and for Marine Protected Areas around them is noted.


Behaviour ◽  
1998 ◽  
Vol 135 (8) ◽  
pp. 1005-1012 ◽  
Author(s):  
Marcelo Cassini

AbstractSouth American fur seals Arctocephalus australis and South American sea lions Otaria fiavescens breed sympatrically on several islands of the coast of Uruguay. O. fiavescens males will sometimes attack A. australis pups and shake or toss them for several minuh:s or even hours. These attacks may result in the death of the pup. I recorded 31 pup attacks at Rasa island, Uruguay, during 1996 breeding season. Most abductors were subadults, which frequently engaged in aggressive encounters with each other during the abduction. After these encounters, the largest males always retained the pups. Forty percent of the pups died during the attacks, which normally ended when the abductor abandoned the pup. Abductors did not mount or eat the pups. Attacks by Otaria males did not appear to have the function of killing Arctocephalus pups. Instead, inter-specific infanticide appeared to be a by-product of intra-sexual competition or sexual frustration of subadult males. The mothers attempted to recover the pup in 31% of the attacks. However, only one mother was able to get her pup away from the abductor. This active role of the mothers was not observed in other colonies where Otaria subadults also attack Arctocephalus pups, e.g. in Peru. This difference is probably associated with the fact that in Uruguay both species use the same islands for reproduction, while in Peru they reproduce allopatrically.


2007 ◽  
Vol 4 (1) ◽  
pp. 139-142 ◽  
Author(s):  
R.A Campbell ◽  
N.J Gales ◽  
G.M Lento ◽  
C.S Baker

Pinnipeds (seals, fur seals, sea lions and walrus) form large breeding aggregations with females often remaining faithful to a natal site or area. In these cases, females are philopatric to regional areas on broad geographical scales of hundreds to thousands of kilometres. An investigation of variation in a control region sequence of mtDNA in the Australian sea lion ( Neophoca cinerea ) has shown a case of extreme female natal site fidelity that has resulted in almost fixed population differentiation across its range ( Φ ST =0.93). This high level of population subdivision over short geographical distances (approx. 60 km) is unparalleled in any social marine mammal and reflects the unique life-history traits of this rare species. The high level of population subdivision and exclusive female natal site fidelity has important ramifications for conservation management, and poses many interesting questions of both academic and applied interest.


1996 ◽  
Vol 23 (6) ◽  
pp. 741 ◽  
Author(s):  
TE Dennis ◽  
PD Shaughnessy

In August 1994, a systematic survey of potential haulout sites of the Australian sea lion, Neophoca cinerea, was conducted along the coastline of the Great Australian Bight from Twin Rocks to Wilson Bluff, a distance of 206 km. A total of 289 Australian sea lions was recorded at 23 sites widely dispersed at the base of the Bunda Cliffs, hauled out on perched platforms formed by collapsed sections of cliff at various levels above the sea. Of these, 37 sea lions were recorded in a deep cave accessed from the sea. The total included 86 pups aged under 12 months, which were probably born in the region; six of these had almost completed moulting their natal pelage and were estimated to be near four months old. Only 12 New Zealand fur seals, Arctocephalus forsteri, were recorded. The Australian sea lion sites located in 1994 were surveyed again in August-September 1995, during a predicted breeding season. In this survey, a total of 284 sea lions was recorded at nine sites in South Australia and one site in Western Australia. This included 90 pups under six months of age, of which 44 were still in lanugo. Overall, we recorded 10 breeding sites and 14 haulout sites. Breeding events were recorded at one colony over three seasons and were consistent with an 18-month cycle. By extrapolating from the number of sea lion pups found in 1994, the population for the Great Australian Bight region in South Australia is estimated to be 613-774. This addition increases the previous estimate for South Australia by 9.3% and the previous total population estimate by 6.6%.


Sign in / Sign up

Export Citation Format

Share Document