Genetic relationships of female reproduction with growth, body composition, maternal weaning weight and tropical adaptation in two tropical beef genotypes

2014 ◽  
Vol 54 (1) ◽  
pp. 60 ◽  
Author(s):  
M. L. Wolcott ◽  
D. J. Johnston ◽  
S. A. Barwick

The genetic relationships of female reproduction with growth and body composition, tropical adaptation traits and maternal weaning weight (descriptive of genetic potential milk production) were estimated in 1027 Brahman (BRAH) and 1132 Tropical Composite (TCOMP) females. Female reproduction was evaluated at puberty, as outcomes of the first and second annual mating periods (Mating 1 and Mating 2, which commenced when females averaged 27 and 39 months of age, respectively), as well as annual averages over up to six matings. Traits evaluated included age at puberty, Mating 1 and 2 pregnancy rate, weaning rate and days to calving, and lifetime annual calving and weaning rate. Traits describing growth and body composition (liveweight, hip height, ultrasound-scanned P8 fat depth and eye muscle area, subjective body condition score and blood IGF-I concentration) were measured in the animals as heifers (at ~18 months of age), and again at the start of Mating 2. Traits describing tropical adaptation included coat-length scores in both genotypes and, in BRAH, buffalo fly lesion scores. Previously reported analyses of these data identified heifer IGF-I and coat and buffalo-fly-lesion scores as potential genetic indicators for age at puberty in BRAH. The results of the present study found that exploiting these relationships would have no unfavourable genetic consequences for later female reproduction and, in some cases, may be indicators of female reproduction, when evaluated as outcomes of Matings 1 or 2, or as lifetime annual calving or weaning rates. For BRAH, heifer liveweight was a genetic indicator for Mating 1 weaning rate (rg = 0.70), and, while standard errors were high, there were also positive genetic correlations of heifer hip height, eye muscle area and blood IGF-I concentration with Mating 1 weaning rate (rg = 0.61, 0.58 and 0.43, respectively). For TCOMP, significant genetic relationships of heifer growth, body composition and tropical adaptation traits with female reproduction were virtually absent, suggesting that there is less opportunity to identify earlier in life measures as genetic indicators of reproduction for this genotype. Higher maternal weaning weight was significantly genetically related to lower lifetime annual weaning rate (rg = –0.50) in BRAH, and with lower Mating 2 calving and weaning rate (rg = –0.72 and –0.59, respectively) in TCOMP, which will need to be considered when making selection decisions that affect genetic milk in these genotypes. Importantly, the results presented revealed no strong genetic antagonisms of heifer growth and body composition traits with female reproduction, suggesting that selection could be undertaken to improve these simultaneously.

2018 ◽  
Vol 58 (1) ◽  
pp. 145 ◽  
Author(s):  
K. A. Donoghue ◽  
S. J. Lee ◽  
P. F. Parnell ◽  
W. S. Pitchford

The genetics of body composition traits measured before calving and at weaning in the first and second parities were evaluated in 5975 Angus and 1785 Hereford cows. Traits measured were liveweight, body condition score and hip height and ultrasound scanned measurements of subcutaneous P8 and 12/13th rib fat depth, loin eye muscle area and intramuscular fat percentage. Corresponding yearling measures on these animals were obtained for analyses of relationships between yearling information with later-in-life traits. There was moderate genetic variation in all body composition traits measured at pre-calving and weaning in Angus (h2 = 0.14–0.59) and Hereford (h2 = 0.14–0.64) cows. Genetic correlations between measurements of the same trait at pre-calving and weaning were consistently positive and high in both parities for both breeds, indicating animals were ranking similarly for the same trait measured over time. Genetic correlations between measurements of different traits were generally consistent over time (pre-calving and weaning) in both breeds, indicating genetic relationships between traits were not changing significantly over time. Genetic correlations with corresponding yearling measures of body composition were consistently positive and high for the first parity, and lower for the second parity. The results of this study indicate that genetic improvement in body composition traits in cows is possible, and that body composition information recorded at yearling age is a reasonably good predictor of later in life performance for these traits.


2018 ◽  
Vol 58 (1) ◽  
pp. 135
Author(s):  
J. De Faveri ◽  
A. P. Verbyla ◽  
S. J. Lee ◽  
W. S. Pitchford

Considerable information exists on genetic relationships of body composition and carcass quality of young and finished beef cattle. However, there is a dearth of information on genetic relationships of cow body composition over time and, also, relationships with young-animal body-composition measures. The aim of the present study is to understand genetic relationships among various cow body-composition traits of Angus cows over time, from yearling to weaning of a second calf at ~3.5 years. To determine genetic correlations among various composition traits over time, a multi-trait–multi-time analysis is required. For the Maternal Productivity Project, this necessitates modelling of five traits (namely weight and ultrasound measure for loin eye muscle area (EMA), rib fat, P8 rump fat and intramuscular fat) by five time combinations (recordings at yearling then pre-calving and weaning in first and second parity). The approach was based on including all 25 trait-by-time combinations in an analysis using factor analytic models to approximate the genetic covariance matrix. Various models for the residual covariance structure were investigated. The analyses yielded correlations that could be compared with those of past studies reported in the literature and, also, to a set of bivariate analyses. Clustering of the genetic multi-trait–multi-time correlation structure resulted in a separation of traits (weight and EMA, and the fat traits) and also of time effects into early (heifer = before first lactation) and late (cow = post-first lactation) measurements.


2014 ◽  
Vol 54 (1) ◽  
pp. 37 ◽  
Author(s):  
M. L. Wolcott ◽  
D. J. Johnston ◽  
S. A. Barwick ◽  
N. J. Corbet ◽  
P. J. Williams

The genetics of cow growth and body composition traits, measured before first calving (pre-calving: in females before calving following their first 3-month annual mating period, at an average age of 34 months) and at the start of the subsequent mating period (Mating 2: on average 109 days later), were evaluated in 1016 Brahman (BRAH) and 1094 Tropical Composite (TCOMP) cows. Measurements analysed were liveweight, ultrasound-scanned measurements of P8 and 12/13th rib fat depth and eye muscle area, body condition score and hip height. Traits describing the change in these from pre-calving to Mating 2 were also included in the analysis. The maternal genetic component of weaning weight was estimated from weaning-weight records on these cows, their steer half-sibs and their progeny generated from up to six matings (n = 12 528). Within pregnant cows at pre-calving, BRAH were significantly lighter, leaner at the P8 site and taller than their TCOMP contemporaries, and these differences were also significant at Mating 2. There was a genetic basis for variation in growth and body composition traits measured at pre-calving and Mating 2 in BRAH (h2 = 0.27–0.67) and TCOMP (h2 = 0.25–0.87). Traits describing the change from pre- calving to Mating 2 were also moderately heritable for both genotypes (h2 = 0.17–0.54), except for change in hip height (h2 = 0.00 and 0.10 for BRAH and TCOMP, respectively). Genetic correlations between measurements of the same trait at pre-calving and Mating 2 were consistently positive and strong (rg = 0.75–0.98) and similar for both genotypes. In lactating cows, genetic correlations of growth and body composition traits with their change from pre-calving to Mating 2 showed that when animals had low levels of P8 and rib fat at Mating 2, change in eye muscle area was an important descriptor of genetic body condition score (rg = 0.63). This was supported by moderate genetic relationships, which suggested that lactating cows that were genetically predisposed to lose less eye muscle area were those that ended the period with higher P8 fat (rg = 0.66), rib fat (rg = 0.72) and body condition score (rg = 0.61). Change in liveweight, body condition score and, in particular, eye muscle area was significantly related to the maternal genetic component of weaning weight (rg = from –0.40 to –0.85) in both genotypes, suggesting that cows with higher genetic milk-production potential were those with the propensity for greater loss of these traits over the period from pre-calving to Mating 2. These results showed that for tropically adapted cows, the change in eye muscle area from pre-calving to Mating 2 was a more important descriptor of body condition at Mating 2 than was change in fat depth, and that higher genetic milk-production potential, measured as maternal weaning weight, was genetically related to higher mobilisation of muscle, and therefore body condition, over this period.


1983 ◽  
Vol 36 (1) ◽  
pp. 117-130 ◽  
Author(s):  
A. J. Webb ◽  
W. S. Russell ◽  
D. I. Sales

ABSTRACTGenetic relationships among leg and performance traits were estimated for 23 975 Large White and Landrace boars fed twice daily to appetite from 27 to 91 kg live weight at Meat and Livestock Commission testing stations between 1966 and 1972. For each boar, an overall leg score was derived as the sum of scores for 19 individual leg traits categorized as ‘absent’ (0), ‘slight’ (1) or ‘severe’ (2) at 91 kg. Heritabilities of leg score were 017 ± 0·03 in Large White and 0·19 ± 0·04 in Landrace. Genetic correlations with a visual ‘leg action’ score on a scale from 1 to 5 averaged 0·93 ± 0·02 over breeds. Genetic and phenotypic correlations between leg scores on the same boars at 27 and 91 kg averaged 0·50 ± 0·17 and 0·15 ± 0·01 respectively.Both breeds showed significant adverse genetic correlations ranging from 0·20 ± 0·10 to 0·40 ± 0·08 between leg score and boar ultrasonic backfat. From slaughtered littermates, leg scores showed favourable genetic correlations with eye-muscle area (0·30 ± 0·10) and killing-out proportion (0·35 ± 011) in Large White and unfavourable correlations with carcass length (0·31 ± 0·10), lean content (0·30 ± 0·14) and backfat (0·33 ± 0·11) in Landrace. There were no associations with growth rate, feed efficiency or the performance index on which boars are selected. The study indicates that leg condition and fatness are adversely genetically related, but that selection on the present national performance index would not be expected to cause a rapid decline in leg condition. Culling on leg score would be expected to reduce the frequency of leg weakness.


2013 ◽  
Vol 53 (10) ◽  
pp. 1075
Author(s):  
Vinzent Börner ◽  
David J. Johnston ◽  
Hans-Ulrich Graser

Genetic parameters of four ultrasound live-scan traits and five carcass traits of Australian Angus cattle were examined with regard to sex and age of the scanned individuals. Live-scans were subdivided according to whether the observation was obtained from a bull or a heifer. In addition, two age subset (‘young’ and ‘old’) within sex were formed by k-means clustering around two centres within sex according to the age at scanning. REML estimates for heritabilities, genetic, residual and phenotypic correlations for each trait and trait combination were derived from a series of uni-, bi- and tri-variate analysis. Statistically significant age effects could be found for heritablities of scan intra-muscular fat content in heifers and scan fat depth at P8 site and scan rib fat depth in bulls, and for genetic correlations between the scan traits fat depth at P8 site, rib fat depth and eye muscle area. However, differences in heritablities between age sets within sex did not exceed 0.05, and genetic correlations between scan traits of ‘young’ and ‘old’ animals were at least 0.9. Differences between genetic correlations of abattoir carcass traits and ‘young’ and ‘old’ live-scan traits, respectively, were not significant due to high standard errors but up to 0.44. The larger of these differences were found for combinations of scan-traits and non-target carcass traits and not for combination of scan-traits and their actual carcass target traits. Thus, although some results suggest an age effect on the genetic parameters of scan traits, the extent of this effect is of limited impact on breeding value accuracy and genetic gain of scan traits. Furthermore, a possible age effect on correlations to economically important carcass traits need to be underpinned by more carcass traits observations in order to get unambiguous results allowing to draw consequences of scanning younger individuals for accuracy of breeding values and genetic gain in carcass traits.


2014 ◽  
Vol 54 (1) ◽  
pp. 85 ◽  
Author(s):  
M. L. Wolcott ◽  
D. J. Johnston ◽  
S. A. Barwick ◽  
N. J. Corbet ◽  
H. M. Burrow

Steer growth and carcass composition, and female reproductive performance have been identified as key aspects of productivity by breeders of tropically adapted beef cattle in Australia. Research has also demonstrated that traits describing meat quality and feed intake and efficiency are of economic importance to Australia’s beef industry. The present study aimed to determine genetic relationships of traits describing steer growth, feed intake and efficiency, carcass composition and meat quality with female reproductive performance in two genotypes of tropically adapted beef cattle. Female reproduction traits describing outcomes of first (Mating 1) and second (Mating 2) annual matings and lifetime reproduction (averaged over 6 matings) were analysed for 1020 Brahman (BRAH) and 1117 Tropical Composite (TCOMP) females. Steer traits were available for 1007 BRAH and 1210 TCOMP half-sibs of the females evaluated for reproductive performance, and measurements of liveweight and body composition for 1025 BRAH and 1520 TCOMP bull progeny of the same females were included in the analysis. Results demonstrated that selection to increase steer carcass weight and eye muscle area and decrease carcass fat depth would have no significant unfavourable impact on female reproductive performance for both genotypes. Measures of liveweight, eye muscle area and P8 fat depth in young BRAH bulls, however, were only moderately correlated with steer carcass equivalents (rg = 0.28 to 0.55) and results showed that selection on the basis of bull measurements alone may negatively affect female lifetime annual calving rate (rg = –0.44 to –0.75) if both were not included in a multi-trait genetic evaluation and considered when making selection decisions. More favourable (lower) net feed intake in BRAH steers was genetically associated with lower Mating 1 weaning rate (rg = 0.76) and higher days to calving (rg = –0.50), although this did not significantly affect lifetime annual calving or weaning rate (rg = 0.10 and 0.29, respectively). For TCOMP, higher steer carcass P8 fat depth was unfavourably genetically associated with female Mating 2 weaning rate (rg = –0.76), although these relationships were not as strong for weaning rate at Mating 1 or when averaged over the animals lifetime (rg = 0.43 and –0.13, respectively). Lower (more favourable) shear force (a measure of tenderness) also displayed a significant genetic association with higher (less favourable) Mating 1 days to calving in TCOMP and, while standard errors were high, tended to be unfavourably associated with other measures of female reproduction evaluated for the present study. Steer growth, carcass composition, meat quality and residual feed intake and female reproduction could be improved simultaneously if measurements describing both are included in a multi-trait genetic evaluation. Results of the present study also showed that expanding female reproduction traits to include descriptors of first and second mating outcomes, as well as lifetime reproductive performance, would allow a fuller account to be taken of genetic relationships of male traits with female reproduction.


2018 ◽  
Vol 58 (1) ◽  
pp. 185 ◽  
Author(s):  
L. M. Cafe ◽  
W. A. McKiernan ◽  
D. L. Robinson

The aim of the present study was to assess the effect of selection for increased muscling on maternal productivity of a temperate beef cow herd. Cows of predominantly Angus breeding were selected using visual muscle score (1–15 scale, where 1 = lightest and 15 = heaviest muscling) into low- and high-muscled animals, and mated to Angus bulls with low or high muscularity. Initially, low-muscled cows were mated to low-muscled bulls to create the Low line, and high-muscled bulls and cows were mated to create the High line. On discovering that some High cattle carried the myostatin (821 del11) gene, a second High line was created to distinguish between cattle with no copies of the myostatin gene (High line) and those with one copy (HighHet line). Data from 12 breeding cycles, consisting of 2003 joining records, and 1713 resulting weaning records were analysed to assess maternal productivity. Cows from the three lines were similar in weight (547, 548 and 550 kg, P = 0.9), but varied in body composition – from Low to High to HighHet cows, muscling traits increased and fatness traits decreased (all P < 0.001). Compared with Low cows, High cows had a 4.4 units higher muscle score, 10% higher eye muscle area and 21% less fat, and HighHet cows had a 7.1 units higher muscle score, 17% higher eye muscle area and 45% less fat. There were no significant effects of selection for increased muscling on live birth or weaning rates, or weaning weight (all P > 0.1). Dystocia levels of Low and HighHet maidens or cows did not differ significantly, but High maidens or cows had less dystocia (P = 0.013). Low, High and HighHet cows weaned 218, 225 and 216 kg of calf/cow joined.year, indicating similar maternal productivity.


1996 ◽  
Vol 1996 ◽  
pp. 143-143
Author(s):  
M C Cia ◽  
S A Edwards ◽  
V L Glasgow ◽  
M Shanks ◽  
H Fraser

Low protein diets have been proposed as a way to enhance fat reserves and reduce liveweight gain in breeding animals of very lean genotypes. The objective of this study was to examine the effect of different protein levels on daily gain, body composition and reproductive performance of gilts.At 118 (sem=0.28) days old, 54 genetically lean gilts ((Landrace x Large White) x Large White) were allocated, considering firstly age and secondly weight, between three treatments with different dietary lysine:energy (g/MJ DE) ratios: High (0.9), Medium (0.6) and Low (0.3), fed twice daily at 2.9 x maintenance energy. Animals were weighed weekly and backfat thickness (P2) and muscle depth values were also taken. Eye muscle area measurements were taken by real time ultrasonography (Aloka 500) at the end of the experiment At 160 days of age, puberty was induced by administration of exogenous gonadotropin (PG600).


2009 ◽  
Vol 49 (6) ◽  
pp. 351 ◽  
Author(s):  
S. A. Barwick ◽  
M. L. Wolcott ◽  
D. J. Johnston ◽  
H. M. Burrow ◽  
M. T. Sullivan

Genetic parameters for Brahman (BRAH) and Tropical Composite (TCOMP) cattle were estimated for steer production traits recorded at weaning (WEAN), 80 days post-weaning (POSTW), feedlot entry (ENTRY) and after ∼120 days feedlot finishing (EXIT). The TCOMP was 50% Bos indicus, African Sanga or other tropically adapted Bos taurus, and 50% non-tropically adapted Bos taurus. Data involved 2216 steers, comprising 1007 BRAH by 53 sires and 1209 TCOMP by 50 sires. Individual daily feed intake (DFI) and residual feed intake (RFI) were assessed on 680 BRAH and 783 TCOMP steers over an ~70-day feedlot test. Other traits were liveweight (LWT), average daily gain (ADG), ultrasonically scanned rump (SP8) fat depth, rib (SRIB) fat depth, M. longissimus area (SEMA) and intra-muscular fat % (SIMF), body condition score (CS), hip height (HH), flight time (FT) and serum insulin-like growth factor-I concentration (IGF-I). BRAH were significantly (P < 0.05) lighter at ENTRY and EXIT, and had lower DFI (10.8 v. 13.2 kg/day) and RFI (–0.30 v. 0.17 kg/day), greater SP8 (5.8 v. 5.1 mm) but similar SRIB at ENTRY, lower SRIB (8.2 v. 8.9 mm) but similar SP8 at EXIT, and greater HH than TCOMP. Heritabilities for DFI, RFI, LWT, ADG, scanned body composition, HH and IGF-I measures, across measurement times, were generally in the 20 to 60% range for both genotypes. Genetic variance for RFI was 0.19 (kg/day)2 in BRAH and 0.41 (kg/day)2 in TCOMP, suggesting a clear potential to genetically change RFI in both genotypes. Trait variances and genetic correlations often differed between the genotypes, supporting the use of genotype-specific parameters in genetic evaluation. The genotype differences may be associated with evolutionary changes that have occurred in B. indicus as a part of their adaptation to tropical environments. Measures with potential to be used as genetic indicators of DFI were LWT measures in BRAH and TCOMP, ADG at ENTRY in TCOMP, and SP8 and SIMF at ENTRY in BRAH. Measures with potential to be genetic indicators of RFI were HH and ADG at ENTRY in BRAH, and IGF-I in both genotypes. Taller and faster-growing BRAH steers at ENTRY had genetically lower RFI. IGF-I was negatively genetically correlated with RFI whether IGF-I was measured at POSTW, ENTRY or EXIT. SRIB fatness at EXIT was strongly positively genetically correlated with RFI in TCOMP but only lowly correlated in BRAH. Fatness at ENTRY was lowly and negatively genetically correlated with RFI. The results emphasise the need for a population-specific understanding of trait relationships and of trait differences between measurement times if genetic indicator traits are to be utilised in genetic evaluation of RFI.


2009 ◽  
Vol 87 (2) ◽  
pp. 477-483 ◽  
Author(s):  
L. A. Kuehn ◽  
D. J. Nonneman ◽  
J. M. Klindt ◽  
T. H. Wise

Sign in / Sign up

Export Citation Format

Share Document