breeding cycles
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 1)

Author(s):  
Mitchel G Stover ◽  
Jason S Villano

IVC systems are marketed for improving the health and management of mouse colonies. The current study compared mouse reproductive performance and husbandry and environmental parameters among 3 high-density (HD) IVC rack systems (RS1, RS2, and RS3), which were present in separate but comparable rooms. Three breeding trios each of Swiss Webster (CFW) and BALB/c mice were placed in each rack (n = 36 female, n = 18 male). Reproductive indices were measured for 3 breeding cycles over 2 generations; indices included time to parturition, litter size and pup weight, survivability, and interbirth interval. Over 18 wk, personnel used scoring systems to evaluate each RS daily to every other week according to cage dirtiness, need for spot changing, ease of cage changing, daily health checks, and cage wash processing. Macroenvironmental parameters (temperature, relative humidity, noise, total particulate matter) were measured weekly over 14 wks. Microenvironmental parameters (temperature, relative humidity, NH3, CO2, O2) of 2 cages each of male and female CFW mice (4 mice/cage) on each RS were measured at 6 time points over 2 wks. RS1 had significantly smaller mean litter sizes of CFW mice (mean ± 1 SD, 6.5 ± 2.9 pups) as compared with both RS2 (9.5 ± 1.7 pups) and RS3 (9.3 ± 3.8 pups). RS1 scored as beingsignificantly easier to process through the cage wash. RS2 had significantly lower room noise levels (46.0 ± 5.0 dBA) but higher humidity (58.6% ± 8.9%) as compared with both RS1 (43.7% ± 9.9%) and RS3 (46.0% ± 12.0%) over the 2-wk cycle, particularly at 8 and 12 d after cage change. In conclusion, in terms of mouse reproductive performance and husbandry and environmental parameters, each system had at least 1 advantage over the other 2. Therefore, various factors should be considered when choosing an IVC system for mice.


Author(s):  
Xabi Cazenave ◽  
Bernard Petit ◽  
Marc Lateur ◽  
Hilde Nybom ◽  
Jiri Sedlak ◽  
...  

Abstract Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e. genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and small increases in predictive ability could be obtained for some traits when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation.


2021 ◽  
Author(s):  
Marlee R. Labroo ◽  
Jessica E. Rutkoski

Background: Recurrent selection is a foundational breeding method for quantitative trait improvement. It typically features rapid breeding cycles that can lead to high rates of genetic gain. In recurrent phenotypic selection, generations do not overlap, which means that breeding candidates are evaluated and considered for selection for only one cycle. With recurrent genomic selection, candidates can be evaluated based on genomic estimated breeding values indefinitely, therefore facilitating overlapping generations. Candidates with true high breeding values that were discarded in one cycle due to underestimation of breeding value could be identified and selected in subsequent cycles. The consequences of allowing generations to overlap in recurrent selection are unknown. We assessed whether maintaining overlapping and discrete generations led to differences in genetic gain for phenotypic, genomic truncation, and genomic optimum contribution recurrent selection by simulation of traits with various heritabilities and genetic architectures across fifty breeding cycles. We also assessed differences of overlapping and discrete generations in a conventional breeding scheme with multiple stages and cohorts. Results: With phenotypic selection, overlapping generations led to decreased genetic gain compared to discrete generations due to increased selection error bias. Selected individuals, which were in the upper tail of the distribution of phenotypic values, tended to also have high absolute error relative to their true breeding value compared to the overall population. Without repeated phenotyping, these erroneously outlying individuals were repeatedly selected across cycles, leading to decreased genetic gain. With genomic truncation selection, overlapping and discrete generations performed similarly as updating breeding values precluded repeatedly selecting individuals with inaccurately high estimates of breeding values in subsequent cycles. Overlapping generations did not outperform discrete generations in the presence of a positive genetic trend with genomic truncation selection, as past generations had lower mean genetic values than the current generation of selection candidates. With genomic optimum contribution selection, overlapping and discrete generations performed similarly, but overlapping generations slightly outperformed discrete generations in the long term if the targeted inbreeding rate was extremely low. Conclusions: Maintaining discrete generations in recurrent phenotypic mass selection leads to increased genetic gain, especially at low heritabilities, by preventing selection error bias. With genomic truncation selection and genomic optimum contribution selection, genetic gain does not differ between discrete and overlapping generations assuming non-genetic effects are not present. Overlapping generations may increase genetic gain in the long term with very low targeted rates of inbreeding in genomic optimum contribution selection.


2021 ◽  
Author(s):  
Xabi Cazenave ◽  
Bernard Petit ◽  
Francois Laurens ◽  
Charles-Eric Durel ◽  
Helene Muranty

Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e. genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and were always highest when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation.


Author(s):  
Grant T Billings ◽  
Michael A Jones ◽  
Sachin Rustgi ◽  
Amanda M Hulse-Kemp ◽  
B Todd Campbell

Abstract Accelerated marker-assisted selection and genomic selection breeding systems require genotyping data to select the best parents for combining beneficial traits. Since 1935, the Pee Dee cotton germplasm enhancement program has developed an important genetic resource for upland cotton (Gossypium hirsutum L.), contributing alleles for improved fiber quality, agronomic performance, and genetic diversity. To date, a detailed genetic survey of the program’s eight historical breeding cycles has yet to be undertaken. The objectives of this study were to evaluate genetic diversity across and within breeding groups, examine population structure, and contextualize these findings relative to the global upland cotton gene pool. The CottonSNP63K array was used to identify 17,441 polymorphic markers in a panel of 114 diverse Pee Dee genotypes. A subset of 4,597 markers was selected to decrease marker density bias. Identity by state (IBS) pairwise distance varied substantially, ranging from 0.55 to 0.97. Pedigree-based estimates of relatedness were not very predictive of observed genetic similarities. Few rare alleles were present, with 99.1% of SNP alleles appearing within the first four breeding cycles. Population structure analysis with principal component analysis, discriminant analysis of principal components, fastSTRUCTURE, and a phylogenetic approach revealed an admixed population with moderate substructure. A small core collection (n < 20) captured 99% of the program’s allelic diversity. Allele frequency analysis indicated potential selection signatures associated with stress resistance and fiber cell growth. The results of this study will steer future utilization of the program’s germplasm resources and aid in combining program-specific beneficial alleles and maintaining genetic diversity.


2021 ◽  
Author(s):  
Júlio César DoVale ◽  
Humberto Fanelli Carvalho ◽  
Felipe Sabadin ◽  
Roberto Fritsche-Neto

ABSTRACTThe selection of informative markers has been studied massively as an alternative to reduce genotyping costs for the genomic selection (GS) application. Low-density marker panels are attractive for GS because they decrease computational time-consuming and multicollinearity beyond more individuals can be genotyped with the same cost. Nevertheless, these inferences are usually made empirically using “static” training sets and populations, which are adequate only to predict a breeding program’s initial cycles but might not for long-term cycles. Moreover, to the best of our knowledge, none of these inferences considered the inclusion of dominance into the GS models, which is particularly important to predict cross-pollinated crops. Therefore, that reveals an important and unexplored topic for allogamous long-term breeding. To achieve this goal, we employed two approaches: the former used empirical maize datasets, and the latter simulations of long-term breeding cycles of phenotypic and genomic recurrent selection (intrapopulation and reciprocal). Then, we observed the reducing marker density effect on populations (mean, the best genotypes performance, accuracy, additive variance) over cycles and models (additive, additive-dominance, specific combining ability (SCA)). Our results indicate that the markers reduction based on different linkage disequili brium (LD) levels is viable only within a cycle and brings a significant decrease in predictive ability over generations. Furthermore, in the long-term, regardless of the selection scheme adopted, the more makers, the better because they buffer LD losses caused by recombination over breeding cycles. Finally, regarding the accuracy, the additive-dominant models tend to outperform the additive ones and perform similar to the SCA.


2021 ◽  
Vol 11 ◽  
Author(s):  
Luis F. Osorio ◽  
Salvador A. Gezan ◽  
Sujeet Verma ◽  
Vance M. Whitaker

The University of Florida strawberry (Fragaria × ananassa) breeding program has implemented genomic prediction (GP) as a tool for choosing outstanding parents for crosses over the last five seasons. This has allowed the use of some parents 1 year earlier than with traditional methods, thus reducing the duration of the breeding cycle. However, as the number of breeding cycles increases over time, greater knowledge is needed on how multiple cycles can be used in the practical implementation of GP in strawberry breeding. Advanced selections and cultivars totaling 1,558 unique individuals were tested in field trials for yield and fruit quality traits over five consecutive years and genotyped for 9,908 SNP markers. Prediction of breeding values was carried out using Bayes B models. Independent validation was carried out using separate trials/years as training (TRN) and testing (TST) populations. Single-trial predictive abilities for five polygenic traits averaged 0.35, which was reduced to 0.24 when individuals common across trials were excluded, emphasizing the importance of relatedness among training and testing populations. Training populations including up to four previous breeding cycles increased predictive abilities, likely due to increases in both training population size and relatedness. Predictive ability was also strongly influenced by heritability, but less so by changes in linkage disequilibrium and effective population size. Genotype by year interactions were minimal. A strategy for practical implementation of GP in strawberry breeding is outlined that uses multiple cycles to predict parental performance and accounts for traits not included in GP models when constructing crosses. Given the importance of relatedness to the success of GP in strawberry, future work could focus on the optimization of relatedness in the design of TRN and TST populations to increase predictive ability in the short-term without compromising long-term genetic gains.


Crop Science ◽  
2020 ◽  
Author(s):  
Pablo González‐Barrios ◽  
Madhav Bhatta ◽  
Madalene Halley ◽  
Pablo Sandro ◽  
Lucía Gutiérrez
Keyword(s):  

Author(s):  
Emmanuel M. Vera Cruz ◽  
Eddie Boy T. Jimenez ◽  
Bethzaida M. Apongol-Ruiz

This experiment assessed the effect of breeder’s behavioral stress response [i.e., eye color pattern (ECP)] during isolation on O. niloticus seed production. ECP change was marked by fractional color changes of the iris and sclera, which was transformed into scores ranging from 0 (no darkening) to 8 (total darkening). After isolation, breeders were divided into two social groups: proactive breeders (PB) were those with a mean ECP score of <2, and reactive breeders (RB) with a mean ECP score of >6. Two breeding cycles were done in six (1 m x 2 m x 1 m) net enclosures. Mean spawning rates (SR) in PB during the two cycles were 38.89±14.70% and 33.33±8.87% while 3.33±9.62% and 22.22±2.48% in the RB group. Total seed productions (TSP) in PB were 1,906.22±733.72 and 1,681.19±1,070.48 fry, and those in RB were 996.35±218.11 and 461.39±151.37 fry. There were no significant differences between the two groups on SR and TSP in both cycles. On seed production per female that spawned, however, significantly (P<0.05) higher means (796.33±77.68 and 726.33±124.08 fry) were observed in the PB compared to those in RB (522.73±54.68 and 335.83±44.98 fry). These results demonstrated that seed production in O. niloticus could be increased by selecting proactive breeders through the evaluation of their ECP during isolation.


Planta ◽  
2020 ◽  
Vol 252 (3) ◽  
Author(s):  
Song Lim Kim ◽  
Nyunhee Kim ◽  
Hongseok Lee ◽  
Eungyeong Lee ◽  
Kyeong-Seong Cheon ◽  
...  

Abstract Main conclusion A new imaging platform was constructed to analyze drought-tolerant traits of rice. Rice was used to quantify drought phenotypes through image-based parameters and analyzing tools. Abstract Climate change has increased the frequency and severity of drought, which limits crop production worldwide. Developing new cultivars with increased drought tolerance and short breeding cycles is critical. However, achieving this goal requires phenotyping a large number of breeding populations in a short time and in an accurate manner. Novel cutting-edge technologies such as those based on remote sensors are being applied to solve this problem. In this study, new technologies were applied to obtain and analyze imaging data and establish efficient screening platforms for drought tolerance in rice using the drought-tolerant mutant osphyb. Red–Green–Blue images were used to predict plant area, color, and compactness. Near-infrared imaging was used to determine the water content of rice, infrared was used to assess plant temperature, and fluorescence was used to examine photosynthesis efficiency. DroughtSpotter technology was used to determine water use efficiency, plant water loss rate, and transpiration rate. The results indicate that these methods can detect the difference between tolerant and susceptible plants, suggesting their value as high-throughput phenotyping methods for short breeding cycles as well as for functional genetic studies of tolerance to drought stress.


Sign in / Sign up

Export Citation Format

Share Document