Effect of root-zone temperatures on morphology, growth and development, yield, and yield components of annual medics

2003 ◽  
Vol 54 (9) ◽  
pp. 917 ◽  
Author(s):  
Majid Amini Dehaghi ◽  
Seyed Ali Mohammad Modarres Sanavy

Annual medic pastures are an effective component of ley-farming systems (cereal–legume rotations) in Australian areas with a Mediterranean climate, but they have been unsuccessful in areas near the Mediterranean Sea. In some zones with a Mediterranean climate, like Iran and Syria, root-zone temperature is considered the major growth-limiting factor for annual medic early in the growing season. In order to study the effect of low root-zone temperature (RZT) on growth and development, yield, and yield components of some annual Medicago species, an experiment was conducted in a controlled-environment chamber. In this experiment, 3 species of annual medics, namely Medicago polymorpha, M. radiata, and M. rigidula, thought to be adapted to cold and temperate conditions, were used. Four root-zone temperatures (5, 10, 15, and 20�C) were considered. The experimental layout was a completely randomised block design with 4 replications. There were differences among the annual medics for dry matter and yield components. Two species, M. polymorpha and M. rigidula, had more leaf, stem, and root dry matter, plant height, leaf and stem to root ratio, leaf to stem ratio, and leaf area and yield than M. radiata. Therefore, M. polymorpha and M. rigidula may be better suited for ley-farming systems in cold and temperate zones. The results also showed that the 5�C RZT effectively decreased the yield and yield components of the annual medics. In conclusion, application of ley-farming is not likely to be successful when RZT is below 5�C, especially during vegetative development. Therefore, in the zones where soil temperature is greater than 10�C, annual medics have normal growth and produce average yields. Ley-farming (cereal–legume rotation) could be replaced with fallow–cereal rotation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Laura Carotti ◽  
Luuk Graamans ◽  
Federico Puksic ◽  
Michele Butturini ◽  
Esther Meinen ◽  
...  

This study analyzed interactions among photon flux density (PPFD), air temperature, root-zone temperature for growth of lettuce with non-limiting water, nutrient, and CO2 concentration. We measured growth parameters in 48 combinations of a PPFD of 200, 400, and 750 μmol m–2 s–1 (16 h daylength), with air and root-zone temperatures of 20, 24, 28, and 32°C. Lettuce (Lactuca sativa cv. Batavia Othilie) was grown for four cycles (29 days after transplanting). Eight combinations with low root-zone (20 and 24°C), high air temperature (28 and 32°C) and high PPFD (400 and 750 μmol m–2 s–1) resulted in an excessive incidence of tip-burn and were not included in further analysis. Dry mass increased with increasing photon flux to a PPFD of 750 μmol m–2 s–1. The photon conversion efficiency (both dry and fresh weight) decreased with increasing photon flux: 29, 27, and 21 g FW shoot and 1.01, 0.87, and 0.76 g DW shoot per mol incident light at 200, 400, and 750 μmol m–2 s–1, respectively, averaged over all temperature combinations, following a concurrent decrease in specific leaf area (SLA). The highest efficiency was achieved at 200 μmol m–2 s–1, 24°C air temperature and 28°C root-zone temperature: 44 g FW and 1.23 g DW per mol incident light. The effect of air temperature on fresh yield was linked to all leaf expansion processes. SLA, shoot mass allocation and water content of leaves showed the same trend for air temperature with a maximum around 24°C. The effect of root temperature was less prominent with an optimum around 28°C in nearly all conditions. With this combination of temperatures, market size (fresh weight shoot = 250 g) was achieved in 26, 20, and 18 days, at 200, 400, and 750 μmol m–2 s–1, respectively, with a corresponding shoot dry matter content of 2.6, 3.8, and 4.2%. In conclusion, three factors determine the “optimal” PPFD: capital and operational costs of light intensity vs the value of reducing cropping time, and the market value of higher dry matter contents.



2020 ◽  
Vol 5 (1) ◽  
pp. 317-324
Author(s):  
Kayla Snyder ◽  
Christopher Murray ◽  
Bryon Wolff

AbstractTo address agricultural needs of the future, a better understanding of plastic mulch film effects on soil temperature and moisture is required. The effects of different plant type and mulch combinations were studied over a 3.5-month period to better grasp the consequence of mulch on root zone temperature (RZT) and moisture. Measurements of (RZT) and soil moisture for tomato (Solanum lycopersicum), pepper (Capsicum annuum) and carrot (Daucus carota) grown using polyolefin mulch films (black and white-on-black) were conducted in Ontario using a plot without mulch as a control. Black mulch films used in combination with pepper and carrot plants caused similar RZTs relative to uncovered soil, but black mulch film in combination with tomato plants caused a reduction in RZT relative to soil without mulch that increased as plants grew and provided more shade. White-on-black mulch film used in combination with tomatoes, peppers or carrots led to a reduction in RZT relative to soil without mulch that became greater than the temperature of soil without mulch. This insulative capability was similarly observed for black mulch films used with tomato plants. Apart from white-on-black film used in combination with tomatoes, all mulch film and plant combinations demonstrated an ability to stabilize soil moisture relative to soil without mulch. RZT and soil moisture were generally stabilized with mulch film, but some differences were seen among different plant types.



1987 ◽  
Vol 67 (2) ◽  
pp. 409-415 ◽  
Author(s):  
A. MENKIR ◽  
E. N. LARTER

Based on the results of an earlier paper, 12 inbred lines of corn (Zea mays L.) were evaluated for emergence and seedling growth at three controlled root-zone temperatures (10, 14, and 18 °C). Low root-zone temperatures, 10 and 14 °C, were detrimental to emergence, seedling growth, and root growth of all inbred lines. Differential responses of inbred lines were observed within each temperature regime. The differences in seedling emergence among lines became smaller with increasing root-zone temperature, while the reverse was true for seedling dry weight. Simple correlation coefficients showed a significantly (P = 0.05) negative association between emergence percentage and emergence index (rate). Neither of these two emergence traits was significantly correlated with seedling dry weights. Seedling dry weights were significantly (P = 0.01) and positively associated with root dry weights. Two inbred lines exhibited good tolerance to low root-zone temperatures, viz. CO255 and RB214. A significant and positive correlation existed between emergence percentage at a root-zone temperature of 10 °C and field emergence in test with the same genotypes reported earlier. Selection at a root-zone temperature of 10 °C for a high percentage of seedling emergence, therefore, could be effective in identifying genotypes capable of germinating in cool soils. Furthermore, the significantly (P = 0.01) positive relationship between seedling dry weights at all root-zone temperatures and those from the field test suggest that strains with vigorous seedling growth in the field could be identified using low root-zone temperature regimes.Key words: Zea mays, root-zone temperature, cold tolerance



1978 ◽  
Vol 14 (3) ◽  
pp. 239-244 ◽  
Author(s):  
W. Godfrey-Sam-Aggrey

SUMMARYEffects of plant population on mean yield and yield components of 2-year sole cassava crops were studied on Njala upland soils of Sierra Leone in two experiments. Increasing plant population of multi-shoot Cocoa cassava over 7000/ha decreased all the parameters studied except top/root weight ratio, which increased. The observed effects were attributed to competition for environmental resources, since area of land/plant unit decreased as plant population increased. The relations between plant populations and yields of fresh root and cortex dry matter were asymptotic, indicating that the respective yields were products of the vegetative phase of cropping.



1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.



1964 ◽  
Vol 56 (2) ◽  
pp. 143-145 ◽  
Author(s):  
H. A. Knoll ◽  
D. J. Lathwell ◽  
N. C. Brady


Sign in / Sign up

Export Citation Format

Share Document