Runoff and soil and nutrient losses from an improved pasture at Ginninderra, Southern Tablelands, New South Wales

1980 ◽  
Vol 31 (3) ◽  
pp. 533 ◽  
Author(s):  
AB Costin

Plot and catchment measurements of runoff and of soil and nutrient losses were carried out on a moderately to heavily grazed (12-30 sheep/ha) phalaris-subterranean clover pasture at Ginninderra. The effects of an intense summer storm were examined by applying artificial rains of 20 mm/ 15 min on 5.6 m2 runoff plots in 1964. The pasture topsoils had high infiltration capacities (50-75 mm/h), and when dry could absorb more than 40 mm of water. Surface runoff and soil loss were inversely related to cover (as pasture, detached litter, and sheep dung). Cover values less than about 70% were associated with some large increases in runoff and soil loss, whereas at higher cover values there was relatively little reduction in runoff and soil loss. Most soil losses were small (< 5 g m-2) when runoffs were less than about 15 %, but increased rapidly with increasing runoff. Acceptable conditions of ground cover were mostly maintained on the improved pasture but their potential for soil and nutrient losses was greater than on native pasture. Pasture renovation substantially reduced surface runoff. The effects of natural rains on runoff and soil and nutrient losses were measured from 1966 to 1971 on a 88 ha experimental catchment. The amount of runoff varied with the amount and season of rainfall, from less than 1 mm (0.2% of rainfall) in a dry year to 51 mm (7%) in a wet year, with an average of 29 mm (4%) per year. Most runoffs in autumn and summer were relatively small, reflecting the high infiltration capacity of the surface soil when topsoil moisture storage was available. In spring and winter, when the topsoil was mostly wet, runoffs were greater, reflecting the much lower infiltration capacities (c. 5 mm/h) of the subsoil. Soil losses were related to the runoffs. They ranged from 4 kg to 376 kg/ha/year, with an average of 179 kg. Most of the soil was in fine suspension, little as bed load or coarse floating debris. Losses of nitrogen, phophorus, potassium and sulfur were at average rates of 0.62, 0.12, 1.93 and 0.06 kg/ha/year. The present rate of soil loss is less than the estimated past rate of topsoil development, and the rates of loss of nitrogen, phosphorus and sulfur are less than the inputs from fertilizers and legumes. With management to retain adequate ground cover, the Ginninderra pasture effectively controls runoff and soil and nutrient losses, and could be used in similar environments as a standard for soil and water conservation, as well as livestock production.

2020 ◽  
Vol 16 (No. 1) ◽  
pp. 22-28
Author(s):  
Yang Qiu ◽  
Xinping Wang ◽  
Zhongkui Xie ◽  
Yajun Wang

Gravel mulching is a characteristic agricultural technique that has been used for hundreds of years in the north-western Loess Plateau of China. However, the effects of the gravel-sand mulch on the processes of the runoff, soil erosion, and nutrient losses are neither fully distinguished nor even known in many parts of the world. This study investigated how different gravel particle sizes in the mulch affected the runoff, erosion as well as the extent of the nutrient losses in the surface runoff. The laboratory experiments were conducted using a rainfall simulator with three gravel mulch treatments: (1) fine gravel mulch (FG); (2) medium gravel mulch (MG); (3) coarse gravel mulch (CG) and a control group, bare soil (BS). The results of these rainfall simulation experiments gave estimates on how the grain size influences the runoff and losses of the soil and its nutrients. Applying the gravel mulch significantly delayed the runoff’s starting time when compared with the bare soil. Both the total runoff and soil loss increased with the grain size of the gravel mulch. Compared with the bare soil, the lowest surface runoff and soil loss was observed from the fine gravel treatment. These results clearly show that gravel mulch plays an important role in the runoff and sediment generation processes, and that it significantly reduces the surface runoff and soil loss. The losses of the total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) from the bare soil were much higher than those under the gravel mulching. The fluctuations in these nutrient-loss processes were the most intense in the CG treatment, while the TC content, in initial runoff, was significantly higher in the FG than the other treatments. Our findings suggest gravel mulch is a useful water and soil conservation technique in the loess area of north-western China, and these results can inform one on the theoretical principles for properly utilising gravel-mulched fields.


2020 ◽  
Author(s):  
Layheang Song ◽  
Laurie Boithias ◽  
Oloth Sengtaheuanghoung ◽  
Chantha Oeurng ◽  
Christian Valentin ◽  
...  

&lt;p&gt;Humid tropical mountainous area experiences serious soil erosion due to rapid changes in landuse, sometimes implying erosion prone management practices. In this study, we hypothesized that keeping understorey in teak tree plantation would protect soil and avoid soil erosion. We assessed the effects of 4 management practices in teak tree plantation area on water and soil losses using 6 replicated 1-m&lt;sup&gt;2&lt;/sup&gt; microplots in four plantations situated in Northern Laos during the wet season of 2017. The landuses in the four plantations were teak without understorey (TNU), teak with low density of understorey (TLU), teak with high density of understorey (THU), and teak with broom grass, &lt;em&gt;Thysanolaena latifolia&lt;/em&gt; (TBG). During the wet season of 2017, we monitored surface runoff and soil loss for 22 rainfall events. We also measured some of the teak tree and understorey characteristics (i.e. height and percentage of cover) and the percentage areas of soil surface features (i.e. litter, free aggregates, crusting, etc.). Relationships among these variables was estimated through multiple statistics and regression analyses. We found that runoff coefficient and soil loss were the smallest for THU and TBG: runoff coefficient was 23% for both treatments, and soil losses were 465 and 381 g m&lt;sup&gt;-2&lt;/sup&gt;, respectively. Runoff coefficient and soil loss for TLU were 35% and 1115 g m&lt;sup&gt;-2&lt;/sup&gt;, respectively. We observed the highest runoff coefficient and soil loss under TNU (60%, 5455 g m&lt;sup&gt;-2&lt;/sup&gt;) associated to the highest crusting rate (82%). High runoff coefficient and soil loss under TNU was explained by the kinetic energy of rain drops falling from the broad leaves of the tall teak trees down to bare soil, devoid of plant residues, thus leading to severe soil surface crusting and detachment. Overall, promoting understorey such as broom grass in teak tree plantations would (1) limit surface runoff and improve soil infiltrability, thus increase the soil water stock available for both root absorption and groundwater recharge, and (2) mitigate soil loss and favour soil fertility conservation.&lt;/p&gt;


1991 ◽  
Vol 71 (4) ◽  
pp. 533-543 ◽  
Author(s):  
L. J. P. Van Vliet ◽  
J. W. Hall

Four erosion plots were monitored from 1983 to 1989 (6 yr) to evaluate the effects of two crop rotations and their constituent crops on runoff and soil loss under natural precipitation near Fort St. John in the Peace River region of British Columbia. Rotation 1 consisted of two cycles of summerfallow — canola (Brassica rapa)-barley (Hordeum vulgare L.), and Rotation 2 included summerfallow — canola-barley-barley underseed to red fescue (Festuca rubra L.)-fescue-fescue. Rainfall and snowmelt runoff were collected and sampled throughout the year to determine seasonal runoff and soil losses. Over the 6 yr, the cumulative runoff and soil losses were consistently greater under Rotation 1 than under Rotation 2. There was a greater than fourfold difference in total soil loss, and 33–35% more total runoff. Rainfall-induced runoff and soil losses were significantly higher for Rotation 1 than for Rotation 2. Snowmelt runoff accounted for 90 and 96% of the total annual runoff and for 39 and 80% of the total annual soil loss from Rotations 1 and 2, respectively. Two large rainfall events during 1983 and 1987, each causing a soil loss in excess of 2000 kg ha−1, accounted for between 85 and 91% of the 6-yr total rainfall-induced erosion from Rotation 1. No differences in runoff or soil loss were detected among crops but the comparisons were insensitive because of high residual variation. Key words: Runoff, soil loss, erosion plots, crop rotations


2013 ◽  
Vol 34 (3) ◽  
pp. 236-259 ◽  
Author(s):  
Gebeyehu Taye ◽  
Jean Poesen ◽  
Bas Van Wesemael ◽  
Matthias Vanmaercke ◽  
Daniel Teka ◽  
...  

1987 ◽  
Vol 30 (1) ◽  
pp. 0166-0168 ◽  
Author(s):  
Kyung H. Yoo ◽  
J. T. Touchton ◽  
R. H. Walker

1992 ◽  
Vol 335 (1275) ◽  
pp. 389-395 ◽  

On an annual basis 80.7% of the 3627 mm precipitation at a site of the East Ridge at Danum Valley, September 1989 to September 1990, reached the forest floor as throughfall and 1.9% as stemflow, giving an interception loss of 17.4%. The proportion of total rainfall intercepted decreases with storm magnitude. Stemflow amounts vary greatly from tree to tree. Under forest, removal of the ground cover and understorey vegetation led to changes in runoff and soil loss; soil faunal activity under natural forest produced higher soil loss from undisturbed natural plots, than from adjacent, partly cleared plots. Between 2.0 and 2.5% of the rain reaching the ground forms overland flow, the remainder infiltrates and much may be evacuated by pipeflow. Storms of 35 mm or more, which accounted for less than 35% of all rain events, produced 70% of the runoff and soil loss.


2002 ◽  
Vol 82 (2) ◽  
pp. 249-258 ◽  
Author(s):  
H W Rees ◽  
T L Chow ◽  
P J Loro ◽  
J. Lavoie ◽  
J O Monteith ◽  
...  

Soil erosion by water associated with potato production in northwestern New Brunswick has been identified as one of the most severe soil degradation problems affecting soil quality in Canada. The objectives of this study were to evaluate the effectiveness of applying various rates of hay mulch following potato (Solanum tuberosum L.) harvest in reducing runoff and soil loss rates under northwestern New Brunswick climatic and soil conditions and to determine the impact of the various hay mulch application rates on potato yield. Wischmeier-like runoff-erosion plots (10 m wide by 30 m long) on a Holmesville gravelly loam soil were used. Annual hay mulch application rates of 0.00, 2.25, 4.50 and 9.00 t ha-1 wet mass were evaluated under continuous up-and-down-slope potato production on 8 and 11% slopes between October 1995 and October 1999. During the study period, annual precipitation was lower than normal. Calculated rainfall erosivities were 102, 66, 73 and 133% of the value typically used for conservation planning in this region (1276 MJ mm ha-1h-1). Seventy-three percent of the average annual erosivity for the 4-yr period was associated with storms occurring in June, July, August and September. Hay mulching at rates of 2.25, 4.50 and 9.00 t ha-1 conserved on average 13, 18 and 28 mm of June to September precipitation, respectively. Mean annual soil losses were reduced to 14, 7 and 2% of the control (5.6 t ha-1) by the 2.25, 4.50 and 9.00 t ha-1 treatments, respectively, on the 11% slope and to 43 and 24% of the control (2.0 t ha-1) on the 2.25 and 4.50 t ha-1 treatments, respectively, on the 8% slope. Eroded sediment silt, clay and organic matter (OM) contents were 1.6, 1.9 and 2.3 times the content of the surface soil at the experimental site. Mulching at rates as low as 2.25 t ha-1 reduced nutrient losses of NO3-N and available P, K, Ca and Mg to 26, 18, 28, 20 and 24% of control, respectively, on the 11% slope, and to 81, 50, 82, 66 and 77% of control, respectively, on the 8% slope. However, levels of nutrient losses from the controls were low to begin with (2.0, 0.4, 2.8, 10.9 and 1.6 kg ha-1 of NO3-N, and available P, K, Ca and Mg, respectively). Both total and marketable potato crop yields from all 2.25 and 4.50 t ha-1 treatments were in excess of 5% greater than their controls; however, only the increases in total yields from the 2.25 and 4.50 t ha-1 treatments and marketable yield from the 4.50 t ha-1 treatment on the 8% slope were significantly greater at P< 0.05. Yield of potato on the 9.00 t ha-1 treatment showed a consistent increase in total yield over the 4-yr period, going from 80% of control in 1996 to 127% of control in 1999, indicating a possible improvement in soil productivity. Hay mulching at rates up to 9.00 t ha-1 did not increase the incidence of disease or other defects. Hay mulching was found to be an effective tool for reducing soil loss while maintaining, and in some cases enhancing, potato yield. Key words: Hay mulching, soil loss, water erosion, organic residues, sediment composition, nutrient loss, erosivity


Sign in / Sign up

Export Citation Format

Share Document