high infiltration
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 30)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 77 (1) ◽  
pp. 39-51
Author(s):  
Brice Prudat ◽  
Wolfgang Fister ◽  
Lena Bloemertz ◽  
Juliane Krenz ◽  
Nikolaus J. Kuhn

Abstract. Sandy soils with fragipans are usually considered poorly suited for agriculture. However, these soils are cultivated in Namibia as they can secure a minimum harvest during droughts. In order to understand the hydrological influence of fragipans in these soils, Ehenge, their soil moisture content was measured for 4 months. These data were then compared to a deep soil without fragipan, Omutunda, which is more productive during normal years but less productive during droughts. The results illustrate that the combination of sandy topsoil and shallow fragipan has beneficial effects on plant-available water during dry periods. Three reasons can be determined: (i) high infiltration rate in the sandy topsoil, (ii) prevention of deep drainage by the fragipan, and (iii) limitation of evaporation losses through the sand. Consequently, transferring these findings to other dry, sandy areas with fragipans, with respective consequences on farming practices, crop productivity, and food security, should be possible.


Author(s):  
Hanmin Tang ◽  
Jing Wang ◽  
Xuehui Luo ◽  
Qi Wang ◽  
Jie Chen ◽  
...  

Purpose: To construct an apoptosis-related gene prognostic index (ARGPI) for colon cancer, and clarify the molecular and immune characteristics of the risk subgroup as defined by the prognostic index and the benefits of adjuvant chemotherapy. Integrating the prognostic index and clinicopathological risk factors to better evaluate the prognosis of patients with colon cancer.Methods: Based on the colon adenocarcinoma data in the TCGA database, 20 apoptosis-related hub genes were screened by weighted gene co-expression network analysis (WGCNA). Five genes constituting the prognosis model were determined by Cox regression and verified by the Gene Expression Omnibus (GEO) dataset. Then the molecular and immune characteristics of risk subgroups defined by the prognostic index and the benefits of adjuvant chemotherapy were analyzed. Finally, nomograms integrating ARGPI and four clinicopathological risk factors were used to evaluate the prognosis of patients with colon cancer.Results: The ARGPI was constructed based on the FAS, VWA5A, SPTBN2, PCK1, and TIMP1 genes. In the TCGA cohort, patients in the low-risk subgroup had a longer progression-free interval (PFI) than patients in the high-risk subgroup, which coincided with the results of the GEO cohort. The comprehensive results showed that the high-risk score was related to the enrichment of the cell cycle pathway, high mutation rate of TP53 and KRAS, high infiltration of T regulatory cells (Tregs), immunosuppressive state, and less chemotherapeutic benefit. However, low-risk scores are related to drug metabolism-related pathways, low TP53 and KRAS mutation rates, high infiltration of plasma cells, more resting CD4 memory cells and eosinophils, active immune function, and better chemotherapeutic benefits. Receiver operating characteristic curve of two-year progress prediction evaluation showed that the ARGPI had higher prognostic accuracy than TNM staging. Nomograms integrating ARGPI and clinicopathological risk factors can better evaluate the prognosis of patients with colon cancer.Conclusions: The ARGPI is a promising biomarker for determining risk of colon cancer progression, molecular and immune characteristics, and chemotherapeutic benefit. This is a reliable method to predict the prognosis of colon cancer patients. It also can assist doctors in formulating more effective treatment strategies.


2021 ◽  
Author(s):  
Jun Kinoshita ◽  
Sachio Fushida ◽  
Takahisa Yamaguchi ◽  
Hideki Moriyama ◽  
Hiroto Saito ◽  
...  

Abstract Background: The multidisciplinary treatment including induction chemotherapy plus conversion surgery (CS) has attracted attention as a new strategy to improve the outcome of metastatic gastric cancer (MGC). However, it is unclear which patients achieve a good response to chemotherapy and successful CS. Tumor-infiltrating immune cells (TIICs) have been reported to be both prognostic and predictive biomarkers not only in immunotherapy but also in chemotherapy in many cancer types. However, there have been no reports on the usefulness of TIICs as biomarkers in conversion surgery for MGC. The aim of the present study was to evaluate the association between the TIICs and treatment outcome for the multidisciplinary treatment in MGC.Methods: We retrospectively analyzed 68 MGC patients who received docetaxel plus cisplatin plus S-1 (DCS) therapy between April 2006 and March 2019 in our institute. The number of tumor-infiltrating CD4+, CD8+, Foxp3+lymphocytes, CD68+, CD163+macrophages in pre-treatment endoscopic biopsy samples were evaluated to investigate their predictive value for multidisciplinary treatment.Results: 50 patients underwent CS following DCS therapy (CS group), whereas 18 patients underwent DCS therapy alone (non-CS group). The MST of CS group was 33.3 months, which was significantly longer than the MST of 9.0 months in non-CS group (p<0.01). The number of CD163+macrophages was extracted as an independent prognostic factor for overall survival in all patients. There were more cases of high infiltration of CD 163+macrophages in non-CS group than in CS group. Furthermore, in CS group, pathological responders to DCS therapy showed low infiltration of CD 163+ macrophages, and high infiltration of CD8+lymphocyte. CD 163 low group showed a significant prolonged survival compared with CD163 high group in patients who underwent CS (p=0.02).Conclusions: The pre-treatment CD163+macrophages infiltration would be a pivotal biomarker for predicting prognosis and pathological response to multidisciplinary treatment among TIICs in MGC.Thus, for patients with low CD163+macrophage infiltration in pre-treatment biopsy sample, diagnostic imaging should be performed frequently during chemotherapy to avoid missing the optimal timing for CS, and CS should be aggressively considered as a treatment option if curative resection is deemed feasible.


2021 ◽  
Vol 16 (1) ◽  
pp. 17-22
Author(s):  
Hanggari Sittadewi

Plant roots and litter produced by tree that grow have an important role in the entry of rainwater into the soil (infiltration) as water storage in the future. The effects of plant roots and litter on increasing infiltration rate is due to increased soil macroporosity. The presence of roots that spread in various layers in the soil profile will further increase the organic matter content of the soil and loosen the soil thereby increasing soil macroporosity. In addition, dead roots will form empty spaces that can be filled by infiltration water, as well as active roots that have gaps between roots and soil that can be filled infiltration water. The high infiltration rate will reduce the amount of excessive runoff water so as to reduce the occurrence of erosion.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hua Chang ◽  
Yuyan Zhu ◽  
Jiahui Zheng ◽  
Lian Chen ◽  
Jiaxing Lin ◽  
...  

Background. High-grade serous ovarian cancer (HGSOC) carries the highest mortality in the gynecological cancers; however, therapeutic outcomes have not significantly improved in recent decades. Macrophages play an essential role in the occurrence and development of ovarian cancer, so the mechanisms of macrophage infiltration should be elucidated. Method. We downloaded transcriptome data of ovarian cancers from the Gene Expression Omnibus and The Cancer Genome Atlas. After rigorous screening, 1566 HGSOC were used for data analysis. CIBERSORT was used to estimate the level of macrophage infiltration and WGCNA was used to identify macrophage-related modules. We constructed a macrophage-related prognostic model using machine learning LASSO algorithm and verified it using multiple HGSOC cohorts. Results. In the GPL570-OV cohort, high infiltration level of M1 macrophages was associated with a good outcome, while high infiltration level of M2 macrophages was associated with poor outcomes. We used WGCNA to select genes correlated with macrophage infiltration. These genes were used to construct protein-protein interaction maps of macrophage infiltration. IFL44L, RSAD2, IFIT3, MX1, IFIH1, IFI44, and ISG15 were the hub genes in the network. We then constructed a macrophage-related prognostic model composed of CD38, ACE2, BATF2, HLA-DOB, and WARS. The model had the ability to predict the overall survival rate of HGSOC patients in GPL570-OV, GPL6480-OV, TCGA-OV, GSE50088, and GSE26712. In exploring the immune microenvironment, we found that CD4 memory T cells and activated mast cells showed that the degree of infiltration was higher in the high-risk group, while M1 macrophages were the opposite, and HLA molecules were overexpressed in the high-risk group. Conclusion. We constructed a macrophage infiltration-related protein interaction network that provides a basis for studying macrophages in HGSOC. Our macrophage-related prognostic model is robust and widely applicable. It predicts overall survival in HGSOC patients and may improve HGSOC treatment.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A308-A308
Author(s):  
Benjamin Besse ◽  
DIB Colette ◽  
Eladio Marquez ◽  
Joon Sang Lee ◽  
Shu Yan ◽  
...  

BackgroundReinvigoration of anti-tumor immunity via immune checkpoint blockade (ICB) has transformed outcomes in a-NSCLC. However, a majority of patients are innately resistant to ICB, and a better understanding of the resistance mechanisms may guide the development of new treatment strategies and therapies for patients.MethodsBiopsies performed immediately before treatment with single agent ICB in patients with a-NSCLC (MATCH-R trial [NCT02517892]) were analyzed. The stromal microenvironment and immune context were characterized via an integrated analysis of whole transcriptome (RNA-seq), whole exome sequencing (WES), and immunohistochemistry (IHC) of CD3, CD8, FOXP3 and PDL1. Specifically, the immune context and the relative abundance of 10 immune and stromal cell types were assessed with integrated IHC and Cell Populations-counter (MCP-counter) [1] analysis of the RNA-seq. Somatic mutations and Tumor Mutation Burden (TMB) were evaluated. The transcriptional state of the tumor and its microenvironment were assessed by GSVA analysis [2] of the MSigDB collection [3]. Patient‘s outcome was associated to molecular data. Primary resistance to ICB was defined as PD (progressive disease) in the first radiological examination, or a median PFS inferior to 3 months.ResultsFifty-two patients with NSCLC were enrolled (43 adeno, 6 squamous, and 3 other carcinoma): Median age was 61 (34–93), 18 were female, 46 were smokers, 22 were responders, and 30 were non-responders. Median tumor cellularity was 60% (30%–90%).Patients may be divided into two groups (HIGH and LOW) at baseline based on their degree of immune infiltration as assessed by RNAseq or IHC. A hallmark of the HIGH infiltration group is an increase in Interferon Gamma (IFN-γ) pathway signature [4]. In contrast, patients in the LOW infiltration group (relative to the HIGH infiltration group) exhibit a decrease in IFN-γ pathway signaling and concomitantly an increase in hypoxia and gluconeogenic pathway signatures. Response rates to ICB were not associated to immune infiltration groups at baseline, but an analysis within each infiltration group revealed that high TMB is only associated to response in the HIGH infiltration group. Furthermore, only in the LOW infiltration group was increased the transforming growth factor (TGF-β) pathway signature associated to ICB response.ConclusionsThis study suggests that the tumor and its microenvironment influence baseline immune infiltration. Tumors with LOW baseline infiltration show altered metabolism such as gluconeogenic activation and hypoxia activation. In contrast, factors such as TMB are not associated with baseline infiltration


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zheng Xiao ◽  
Kechao Nie ◽  
Tong Han ◽  
Lin Cheng ◽  
Zheyu Zhang ◽  
...  

In this study, a comprehensive analysis of TNF family members in colorectal cancer (CRC) was conducted and a TNF family-based signature (TFS) was generated to predict prognosis and immunotherapy response. Using the expression data of 516 CRC patients from The Cancer Genome Atlas (TCGA) database, TNF family members were screened to construct a TFS by using the univariate Cox proportional hazards regression and the least absolute shrinkage and selection operator- (LASSO-) Cox proportional hazards regression method. The TFS was then validated in a meta-Gene Expression Omnibus (GEO) cohort ( n = 1162 ) from the GEO database. Additionally, the tumor immune characteristics and predicted responses to immune checkpoint blockade in TFS-based risk subgroups were analyzed. Eight genes (TNFRSF11A, TNFRSF10C, TNFRSF10B, TNFSF11, TNFRSF25, TNFRSF19, LTBR, and NGFR) were used to construct the TFS. Compared to the high-risk patients, the low-risk patients had better overall survival, which was verified by the GEO data. In addition, a high TFS risk score was associated with high infiltration of regulatory T cells (Tregs), nonactivated macrophages (M0), natural killer cells, immune escape phenotypes, poor immunotherapy response, and tumorigenic and metastasis-related pathways. Conversely, a low TFS risk score was related to high infiltration of resting CD4 memory T cells and resting dendritic cells, few immune escape phenotypes, and high sensitivity to immunotherapy. Thus, the eight gene-based TFS is a promising index to predict the prognosis, immune characteristics, and immunotherapy response in CRC, and our results also provide new understanding of the role of the TNF family members in the prognosis and treatment of CRC.


Author(s):  
Kavita Rawat ◽  
Saima Syeda ◽  
Anju Shrivastava

Various studies have addressed the role of neutrophils in cancer wherein the focus has been drawn on the elevated neutrophil count in blood or at tumor loci. However, cancer has a systemic impact which targets various organs thus challenging the overall physiology of the host. So, it is worthwhile to explore whether and how neutrophils contribute to systemic deterioration in cancer. To discern the systemic role of neutrophils, we monitored their number and function at different stages of tumor growth in Dalton&rsquo;s lymphoma mice model. Notably, we observed a gradual increase in neutrophil count in blood and their infiltration in vital organs of tumor bearing mice. In parallel, we observed damaged histoarchitecture with significant alterations in biochemical parameters that aggravated with tumor progression. We next examined systemic impact of neutrophil by assessing neutrophil elastase, myeloperoxidase, and matrix metalloproteinases (MMP-8 and MMP-9) wherein we found their upregulated expression and activity in tumor condition. Taken together, our results demonstrate high infiltration and hyperactivation of neutrophils which possibly account for gradual systemic deterioration during cancer progression. Our findings thus implicate neutrophils as a potential therapeutic target that may help to reduce the overall fatality rate of cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shi-yi Liu ◽  
Rong-hui Zhu ◽  
Zi-tao Wang ◽  
Wei Tan ◽  
Li Zhang ◽  
...  

Background. Epithelial ovarian cancer (EOC) is an extremely lethal gynecological malignancy and has the potential to benefit from the immune checkpoint blockade (ICB) therapy, whose efficacy highly depends on the complex tumor microenvironment (TME). Method and Result. We comprehensively analyze the landscape of TME and its prognostic value through immune infiltration analysis, somatic mutation analysis, and survival analysis. The results showed that high infiltration of immune cells predicts favorable clinical outcomes in EOC. Then, the detailed TME landscape of the EOC had been investigated through “xCell” algorithm, Gene set variation analysis (GSVA), cytokines expression analysis, and correlation analysis. It is observed that EOC patients with high infiltrating immune cells have an antitumor phenotype and are highly correlated with immune checkpoints. We further found that dendritic cells (DCs) may play a dominant role in promoting the infiltration of immune cells into TME and forming an antitumor immune phenotype. Finally, we conducted machine-learning Lasso regression, support vector machines (SVMs), and random forest, identifying six DC-related prognostic genes (CXCL9, VSIG4, ALOX5AP, TGFBI, UBD, and CXCL11). And DC-related risk stratify model had been well established and validated. Conclusion. High infiltration of immune cells predicted a better outcome and an antitumor phenotype in EOC, and the DCs might play a dominant role in the initiation of antitumor immune cells. The well-established risk model can be used for prognostic prediction in EOC.


Aging ◽  
2021 ◽  
Author(s):  
Fanjing Meng ◽  
Xu Han ◽  
Zhixue Min ◽  
Xuehui He ◽  
Sha Zhu

Sign in / Sign up

Export Citation Format

Share Document