runoff coefficient
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 96)

H-INDEX

18
(FIVE YEARS 4)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 175
Author(s):  
Lloyd Ling ◽  
Sai Hin Lai ◽  
Zulkifli Yusop ◽  
Ren Jie Chin ◽  
Joan Lucille Ling

The curve number (CN) rainfall–runoff model is widely adopted. However, it had been reported to repeatedly fail in consistently predicting runoff results worldwide. Unlike the existing antecedent moisture condition concept, this study preserved its parsimonious model structure for calibration according to different ground saturation conditions under guidance from inferential statistics. The existing CN model was not statistically significant without calibration. The calibrated model did not rely on the return period data and included rainfall depths less than 25.4 mm to formulate statistically significant urban runoff predictive models, and it derived CN directly. Contrarily, the linear regression runoff model and the asymptotic fitting method failed to model hydrological conditions when runoff coefficient was greater than 50%. Although the land-use and land cover remained the same throughout this study, the calculated CN value of this urban watershed increased from 93.35 to 96.50 as the watershed became more saturated. On average, a 3.4% increase in CN value would affect runoff by 44% (178,000 m3). This proves that the CN value cannot be selected according to the land-use and land cover of the watershed only. Urban flash flood modelling should be formulated with rainfall–runoff data pairs with a runoff coefficient > 50%.


2022 ◽  
Vol 9 (2) ◽  
pp. 3293-3305
Author(s):  
Fajar Yulianto ◽  
Muhammad Rokhis Khomarudin ◽  
Eddy Hermawan ◽  
Nunung Puji Nugroho ◽  
Galdita Aruba Chulafak ◽  
...  

In Indonesia, flooding is one of the natural hazards that often occurs during the rainy season. Surface runoff coefficient values are an essential indicator of the supply of regional water resources. The smaller the surface runoff value, the greater the water storage in the ground, and the smaller surface was running water. This study analyses the spatial and temporal distribution of the estimated surface runoff caused by land use/land cover changes in the upstream Citarum watershed. The study area is located in the upstream Citarum watershed, West Java, Indonesia. The site has a long history of flooding and various complex environmental problems. The geographic Information System method was used as a tool in analyzing the spatially and temporally. The research result shows that there has been a change in land cover in several periods of the year in the Citarum upstream watershed. The occurrence of the LULC phenomenon positively affects the surface runoff coefficient. The increasing area of Built land and plantation in the Citarum upstream watershed will further increase the surface runoff coefficient and, in the end, will potentially increase the surface runoff and contribute to flooding in the Bandung basin. This study results can be used to provide input in determining the direction and policies for watershed management, taking into account the varying characteristics of each subwatershed.


2022 ◽  
Vol 951 (1) ◽  
pp. 012111
Author(s):  
H Basri ◽  
S Syakur ◽  
A Azmeri ◽  
E Fatimah

Abstract The phenomenon of flooding that occurs in almost all regions of the earth causes loss of property and damage to public facilities and causes the loss of many human lives. There are many reports related to the causes of flooding with various solutions offered to overcome the flood problem. However, it seems that these efforts have not been able to eliminate the flood problem. Hydrologists have widely reported various factors that are the cause of flooding with an extensive scope. Therefore, this paper is limited to discussing flooding and its problems, specifically the river flood, from the perspective of land use and soil types. Changes in land use in a watershed can cause an increase in the runoff coefficient. Likewise, different types of soil have different abilities in passing water into the ground. Open land (without land cover) tends to be prone to erosion, reducing the soil’s infiltration capacity and increased surface runoff. Increasing the runoff coefficient will increase the peak discharge in a watershed. The decrease in the river capacity due to sediment can cause a river flood. To support this argument, a rainfall-runoff model, particularly the tank model, is also discussed, taking into account the various uses and types of soil in a watershed. Efforts to anticipate the river flood are also considered for formulating flood disaster control policies in a watershed.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Kechang Dai ◽  
Weixing Liu ◽  
Xiaotian Shui ◽  
Dafang Fu ◽  
Chris Zevenbergen ◽  
...  

Permeable pavements can infiltrate and reduce stormwater runoff in parking lots, but issues around long construction periods and proper maintenance still required proper research and further understanding. The application of precast concrete can help to solve this. In this study, precast concrete components were applied to the design of permeable pavements to form prefabricated permeable pavements. The laboratory study is one of the first to examine the hydrological effect of prefabricated pervious pavements in parking lots. Four kinds of permeable pavements were designed and manufactured. These had different materials (natural sand-gravel, medium sand) which comprised the leveling layer or different assembly forms of precast concrete at the base. Three scenarios of rainfall intensity (0.5, 1, and 2 mm/min) and three rainfall intervals (one, three, and seven days) were simulated using rainfall simulators. The initial runoff time, runoff coefficient, and runoff control rate of each permeable pavement were investigated during the process of simulating. Results showed that the initial runoff time was no earlier than 42 min, the maximum runoff coefficient was 0.52, and the minimum runoff control rate was 47.7% within the rainfall intensity of 2 mm/min. The initial runoff time of each permeable pavement was no earlier than 36 min when the rainfall interval was one day, whereas, the maximum runoff coefficient was 0.64, and the average runoff control rate was 41.5%. The leveling layer material had a greater impact on the hydrological effect of permeable pavements, while the assembly form of precast concrete had no significant effect. Compared with natural sand-gravel, when the leveling layer was medium sand, the runoff generation was advanced by 4.5–7.8 min under different rainfall intensities, and 7–10 min under different rainfall intervals. The maximum runoff coefficient increased with about 14.6% when the rainfall interval was one day. Among four kinds of permeable pavements, the type I permeable pavement had the best runoff regulation performance. The results revealed that all prefabricated permeable pavements used in this study had good runoff control performance, and this design idea proved to be an alternative for the future design of permeable pavements.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012034
Author(s):  
J Vystrčil ◽  
O Nespešný ◽  
K Šuhajda ◽  
D Bečkovský ◽  
P Selník

Abstract Describes the procedure of experimental measurement of the runoff coefficient C, both of individual layers and the entire composition extensive green roofs. Experimental measurements make it possible to determine the reference behaviour of runoff characteristics, namely runoff coefficient C, with emphasis on the simulation of the real behaviour of extensive green roofs. The aim is an elementary description of the structural and physical behaviour of extensive green roofs. For the needs of experimental measurement, the dimensional and shape limits of test specimens are described, the conditions for conditioning of individual specimens, the boundary conditions of execution and individual steps of the experiment. Then is specified the method of evaluation and subsequent verification of measured data. The result of the experimental measurement is the amount of drained water from the tested specimens of the extensive green roof at time t, which shows a nonlinear behaviour. From the set of measured data, it is then possible to predict the behaviour of extensive green roofs in real conditions and to determine the runoff coefficient C of the tested specimens. These data represent reference values for the subsequent design of sub-elements and structures of buildings.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3375
Author(s):  
Ying Zhang ◽  
Hongliang Xu ◽  
Honglei Liu ◽  
Bin Zhou

In recent decades, low impact development (LID) has become an increasingly important concern as a state-of-the-art stormwater management mode to treat urban flood, preferable to conventional urban drainage systems. However, the effects of the combined use of different LID facilities on urban flooding have not been fully investigated under different rainfall characteristics. In this study, a residential, neighborhood-scale catchment in Shenzhen City, southern China was selected as a case study, where the effects of four LID techniques (bio-retention, bio-swale, rain garden and pervious pavement) with different connection patterns (cascaded, semi-cascaded and paralleled) on runoff reduction efficiency were analyzed by the storm water management model (SWMM), promoted by the U.S. EPA. Three kinds of designed storm events with different return periods, durations and time-to-peak ratios were forced to simulate the flood for holistic assessment of the LID connection patterns. The effects were measured by the runoff coefficient of the whole storm–runoff process and the peak runoff volume. The results obtained indicate that the cascaded connect LID chain can more effectively reduce the runoff than that in the paralleled connect LID chain under different storms. The performances of the LID chains in modeling flood process in SWMM indicate that the runoff coefficient and the peak runoff volume increase with the increase in the rain return periods and the decrease in rain duration. Additionally, the move backward of the peak rain intensity to the end of the storm event slightly affects the peak runoff volume obviously while gives slight influence on the total runoff volume. This study provides an insight into the performance of LID chain designs under different rainfall characteristics, which is essential for effective urban flood management.


2021 ◽  
Vol 25 (11) ◽  
pp. 6023-6039
Author(s):  
Xichao Gao ◽  
Zhiyong Yang ◽  
Dawei Han ◽  
Kai Gao ◽  
Qian Zhu

Abstract. Wind drift has a significant influence on the rainfall–runoff relationship in urban high-rise building areas since the oblique rainfall caused by the wind drift can interact with the building walls. However, the impact of the rainfall inclination angle on the rainfall–runoff process in urban high-rise building areas has not been studied. In this study, the relationship between wind and the rainfall–runoff process in such areas was explored. A theoretical framework has been developed to describe their relationship, including a computational fluid dynamics (CFD) method to obtain the relationship between wind speed and rainfall inclination and a newly derived equation to describe the relationship between rainfall inclination and the runoff coefficient. Subsequently, a laboratory scale model experiment was conducted to verify the proposed framework. The main results are that (1) the runoff coefficient calculated by the proposed theoretical framework is highly consistent with that obtained from the laboratory experiment, (2) the runoff coefficient of urban high-rise building areas increases with wind speed and the increase rate is linear with the tangent of the rainfall inclination angle, and (3) the change in the runoff coefficient for the experiment with larger raindrop is 0.047 when the wind speed increases from 0 to 5.9 m s−1, while that for the experiment with smaller raindrop is 0.064, which means that the rainfall with larger droplets is less influenced by the wind.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3282
Author(s):  
Ji He ◽  
Yu-Rong Wan ◽  
Hai-Tao Chen ◽  
Wen-Chuan Wang

To reveal the influence process of land use changes on runoff variation trends, this paper takes the Luojiang River of China as the study area, and the Soil and Water Assessment Tool (SWAT) model was constructed to quantitatively analyze the impact of different land uses on runoff formation in the watershed, and used the Cellular Automata-Markov (CA-Markov) model to predict future land use scenarios and runoff change trends. The results show that: (1) the SWAT model can simulate the runoff in the Luojiang River basin; (2) the runoff in the Luojiang River basin has a decreasing trend in recent 10 years, caused by the decrease of rainfall and runoff due to changes in land use; (3) the forecast shows that the land-use changes in the basin will lead to an increase in runoff coefficient in 2025. The increase of the runoff coefficient will bring some adverse effects, and relevant measures should be taken to increase the water storage capacity of urban areas. This study can help plan future management strategies for the study area land coverage and put forward a preventive plan for the possible adverse situation of runoff variation.


2021 ◽  
Vol 69 (4) ◽  
pp. 387-399
Author(s):  
Roberto Lázaro ◽  
Adolfo Calvo-Cases ◽  
Eva Arnau-Rosalén ◽  
Consuelo Rubio ◽  
David Fuentes ◽  
...  

Abstract The runoff coefficient (RC) is widely used despite requiring to know the effective contributing area, which cannot be known a priori. In a previous work, we defined runoff length (RL), which is difficult to measure. This work aimed to define the minimum RL (mRL), a quantitative and easy proxy of RL, for use in a pilot study on biocrusts in the Tabernas Desert, Spain. We show that RC decreases according to a hyperbola when the contributing area increases, the independent variable being the length of the effective contributing area and its coefficient involving the effects of rainfall and surface features and antecedent conditions. We defined the mRL as the length of the effective contributing area making RC = 1, which is calculated regardless of the area. We studied mRL from three biocrust types and 1411 events clustered in seven categories. The mRL increased with rain volume and intensity, catchment area and slope, whereas plant cover and biocrust succession (with one exception) had a negative effect. Depending on the plot, mRL reached up 3.3–4.0 m on cyanobacterial biocrust, 2.2–7.5 m on the most widespread lichens, and 1.0–1.5 m on late-successional lichens. We discuss the relationships of mRL with other runoff-related parameters.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022124
Author(s):  
Zuzana Miňová ◽  
Pavol Purcz ◽  
Lukáš Takal

Abstract The water storage capacity of a green roof forms several benefits for the building and its environment. The hydrologic performance is traditionally expressed by the runou coefficient, according to international guidelines and standards. The runoff coefficient is a dimensionless coefficient relating the amount of runoff to the amount of precipitation received. It is a larger value for areas with low infiltration and high runoff (pavement, steep gradient), and lower for permeable, well vegetated areas (forest, flat land). The paper is presenting 3 experimental stands of green roofs. Each stand is unique in terms of its construction. The aim of this paper is to highlight how green roof responds to real clima events. The experiment provides mathematical graphs and behaviour of the geen roof stands from 03/2019 to 01/2021.


Sign in / Sign up

Export Citation Format

Share Document