Application of the Fick principle to the continuous measurement of energy expenditure in pigs

1993 ◽  
Vol 44 (7) ◽  
pp. 1423
Author(s):  
LR Giles ◽  
JM Gooden

The paper reviews the current methods available for the measurement of heat exchange in pigs. The cost of construction of automated open-circuit respiration chambers, in association with climate-controlled facilites, has restricted continuous measurement of energy expenditure in pigs to a small number of laboratories around the world. Ventilated hoods and face mask techniques are not viable alternatives because of difficulties in maintaining a uniform environment around the animal and restriction of food intake. Indirect techniques, including carbon dioxide (CO2) entry rate and doubly-labelled water are only applicable when other technique are not available because of the errors involved when energy expenditure is based on CO2 production alone. An alternative procedure is described for the measurement of energy expenditure in the growing pig. Whole-body oxygen (O2) consumption is calculated from the product of cardiac output and the arteriovenous difference in blood O2 concentration across the lungs (Fick principle). Oxygen consumption recorded with the new procedure was compared with the ventilated hood and CO2 entry-rate techniques, and used to examine the heat exchange of growing pigs maintained at high ambient temperatures

Rangifer ◽  
2000 ◽  
Vol 20 (2-3) ◽  
pp. 211 ◽  
Author(s):  
Geir Gotaas ◽  
Eric Milne ◽  
Paul Haggarty ◽  
Nicholas J.C. Tyler

The doubly labelled water (DLW) method was used to measure total energy expenditure (TEE) in three male reindeer (Rangifer tarandus tarandus) aged 22 months in winter (February) while the animals were living unrestricted at natural mountain pasture in northern Norway (69°20'N). The concentrations of 2H and l8O were measured in water extracted from samples of faeces collecred from the animals 0.4 and 11.2 days after injection of the isotopes. Calculated rates of water flux and CO2-production were adjusted to compensate for estimated losses of 2H in faecal solids and in methane produced by microbial fermentation of forage in the rumen. The mean specific TEE in the three animals was 3.057 W.kg-1 (range 2.436 - 3.728 W.kg1). This value is 64% higher than TEE measured by the DLW method in four captive, non-pregnant adult female reindeer in winter and probably mainly reflects higher levels of locomotor activity in the free-living animals. Previous estimates of TEE in free-living Rangifer in winter based on factorial models range from 3.038 W.kg-1 in female woodland caribou (R. t. caribou) to 1.813 W.kg-1 in female Svalbard reindeer (R. t. platyrhynchus). Thus, it seems that existing factorial models are unlikely to overestimate TEE in reindeer/caribou: they may, instead, be unduly conservative. While the present study serves as a general validation of the factorial approach, we suggest that the route to progress in the understanding of field energetics in wild ungulates is via application of the DLW method.


2006 ◽  
Vol 25 (3) ◽  
pp. 489-496 ◽  
Author(s):  
Peter Junghans ◽  
Michael Derno ◽  
Stefan Pierzynowski ◽  
Ulf Hennig ◽  
Paul Eberhard Rudolph ◽  
...  

2012 ◽  
Vol 109 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Stephen Whybrow ◽  
Patrick Ritz ◽  
Graham W. Horgan ◽  
R. James Stubbs

Objective estimates of activity patterns and energy expenditure (EE) are important for the measurement of energy balance. The Intelligent Device for Energy Expenditure and Activity (IDEEA) can estimate EE from the thirty-five postures and activities it can identify and record. The present study evaluated the IDEEA system's estimation of EE using whole-body indirect calorimetry over 24 h, and in free-living subjects using doubly-labelled water (DLW) over 14 d. EE was calculated from the IDEEA data using calibration values for RMR and EE while sitting and standing, both as estimated by the IDEEA system (IDEEAest) and measured by indirect calorimetry (IDEEAmeas). Subjects were seven females and seven males, mean age 38·1 and 39·7 years, mean BMI 25·2 and 26·2 kg/m2, respectively. The IDEEAest method produced a similar estimate of EE to the calorimeter (10·8 and 10·8 MJ, NS), while the IDEEAmeas method underestimated EE (9·9 MJ, P < 0·001). After removing data from static cycling, which the IDEEA was unable to identify as an activity, both the IDEEAest and IDEEAmeas methods overestimated EE compared to the calorimeter (9·9 MJ, P < 0·001; 9·1 MJ, P < 0·05 and 8·6 MJ, respectively). Similarly, the IDEEA system overestimated EE compared to DLW over 14 d; 12·7 MJ/d (P < 0·01), 11·5 MJ/d (P < 0·01) and 9·5 MJ/d for the IDEEAest, IDEEAmeas and DLW, respectively. The IDEEA system overestimated EE both in the controlled laboratory and free-living environments. Using measured EE values for RMR, sitting and standing reduced, but did not eliminate, the error in estimated EE.


2005 ◽  
Vol 8 (7a) ◽  
pp. 1123-1132 ◽  
Author(s):  
James A Levine

AbstractMeasurement of energy expenditure in humans is required to assess metabolic needs, fuel utilisation, and the relative thermic effect of different food, drink, drug and emotional components. Indirect and direct calorimetric and non-calorimetric methods for measuring energy expenditure are reviewed, and their relative value for measurement in the laboratory and field settings is assessed. Where high accuracy is required and sufficient resources are available, an open-circuit indirect calorimeter can be used. Open-circuit indirect calorimeters can employ a mask, hood, canopy or room/chamber for collection of expired air. For short-term measurements, mask, hood or canopy systems suffice. Chamber-based systems are more accurate for the long-term measurement of specified activity patterns but behaviour constraints mean they do not reflect real life. Where resources are limited and/or optimum precision can be sacrificed, flexible total collection systems and non-calorimetric methods are potentially useful if the limitations of these methods are appreciated. The use of the stable isotope technique, doubly labelled water, enables total daily energy expenditure to be measured accurately in free-living subjects. The factorial method for combining activity logs and data on the energy costs of activities can also provide detailed information on free-living subjects.


1981 ◽  
Vol 50 (5) ◽  
pp. 1098-1103 ◽  
Author(s):  
K. Schulze ◽  
R. Kairam ◽  
M. Stefanski ◽  
R. Sciacca ◽  
L. S. James

A system of instrumentation for continuous measurement of gaseous metabolism and minute volume (VI) in the human newborn is described. O2 uptake and CO2 production are measured by open-circuit techniques utilizing a Servomex OA184 differential paramagnetic O2 analyzer and a BEckman LB-2 infrared CO2 analyzer. VI is measured with bias-flow pneumotachometry. Bench performance is described, methodological errors are defined, and clinical data are presented. The instrumentation is capable of safe, accurate, and continuous measurement of respiratory and metabolic variables in low-birth-weight infants.


1997 ◽  
Vol 78 (5) ◽  
pp. 695-708 ◽  
Author(s):  
Linda Davidson ◽  
Geraldine McNeill ◽  
Paul Haggarty ◽  
John S. Smith ◽  
Michael F. Franklin

Free-living energy expenditure was estimated by doubly-labelled water (DLW) and continuous heart-rate (HR) monitoring over nine consecutive days in nine healthy men with sedentary occupations but different levels of leisure-time physical activity. Individual calibrations of the HR-energy expenditure (EE) relationship were obtained for each subject using 30 min average values of HR and EE obtained during 24h whole-body calorimetry with a defined exercise protocol, and additional data points for individual leisure activities measured with an Oxylog portable O2 consumption meter. The HR data were processed to remove spurious values and insert missing data before the calculation of EE from second-order polynomial equations relating EE to HR. After data processing, the HR-derived EE for this group of subjects was on average 0.8 (sem 0.6) MJ/d, or 6.0 (sem 4.2)% higher than that estimated by DLW. The diary-respirometer method, used over the same 9d, gave values which were 1.9 (sem 0.7) MJ/d, or -12.1 (sem 4.0)% lower than the DLW method. The results suggest that HR monitoring can provide a better estimate of 24 h EE of groups than the diary-respirometer method, but show that both methods can introduce errors of 20% or more in individuals.


1992 ◽  
Vol 263 (4) ◽  
pp. E676-E687 ◽  
Author(s):  
M. Elia ◽  
N. J. Fuller ◽  
P. R. Murgatroyd

Bicarbonate turnover and energy expenditure were assessed in six healthy male volunteers, by the use of a constant infusion of radiolabeled bicarbonate (NaH14CO3) administered over 36 h, while the volunteers were confined to a whole body indirect calorimeter. Recovery and dilution of isotope were assessed from measurements made on continuous collections of CO2, entering and leaving the calorimeter, urine, and intermittent spot breath and saliva samples. Mean recovery of infused label in gaseous CO2 was 95.6 +/- 1.1% (SD) between 12 and 36 h. Applying a 95% mean recovery of label to each subject individually enabled the use of integrated mean specific activity of CO2 in spot breath and urine samples to predict measured net CO2 production and energy expenditure to within about +/- 6%. Estimates based on urinary measurements were compromised slightly by the exchange of label through the bladder wall (this was dependent on pH and volume of urine). It is concluded that this constant-infusion labeled bicarbonate method offers a potentially useful means of assessing net CO2 production and total energy expenditure over the short term (e.g., 1-3 days).


1997 ◽  
Vol 77 (S1) ◽  
pp. S57-S70 ◽  
Author(s):  
France Bellisle ◽  
Regina McDevitt ◽  
Andrew M. Prentice

Several epidemiological studies have observed an inverse relationship between people's habitual frequency of eating and body weight, leading to the suggestion that a ‘nibbling’ meal pattern may help in the avoidance of obesity. A review of all pertinent studies shows that, although many fail to find any significant relationship, the relationship is consistently inverse in those that do observe a relationship. However, this finding is highly vulnerable to the probable confounding effects of post hoc changes in dietary patterns as a consequence of weight gain and to dietary under-reporting which undoubtedly invalidates some of the studies. We conclude that the epidemiological evidence is at best very weak, and almost certainly represents an artefact. A detailed review of the possible mechanistic explanations for a metabolic advantage of nibbling meal patterns failed to reveal significant benefits in respect of energy expenditure. Although some short-term studies suggest that the thermic effect of feeding is higher when an isoenergetic test load is divided into multiple small meals, other studies refute this, and most are neutral. More importantly, studies using whole-body calorimetry and doubly-labelled water to assess total 24h energy expenditure find no difference between nibbling and gorging. Finally, with the exception of a single study, there is no evidence that weight loss on hypoenergetic regimens is altered by meal frequency. We conclude that any effects of meal pattern on the regulation of body weight are likely to be mediated through effects on the food intake side of the energy balance equation.


Sign in / Sign up

Export Citation Format

Share Document