Measurement of energy expenditure

2005 ◽  
Vol 8 (7a) ◽  
pp. 1123-1132 ◽  
Author(s):  
James A Levine

AbstractMeasurement of energy expenditure in humans is required to assess metabolic needs, fuel utilisation, and the relative thermic effect of different food, drink, drug and emotional components. Indirect and direct calorimetric and non-calorimetric methods for measuring energy expenditure are reviewed, and their relative value for measurement in the laboratory and field settings is assessed. Where high accuracy is required and sufficient resources are available, an open-circuit indirect calorimeter can be used. Open-circuit indirect calorimeters can employ a mask, hood, canopy or room/chamber for collection of expired air. For short-term measurements, mask, hood or canopy systems suffice. Chamber-based systems are more accurate for the long-term measurement of specified activity patterns but behaviour constraints mean they do not reflect real life. Where resources are limited and/or optimum precision can be sacrificed, flexible total collection systems and non-calorimetric methods are potentially useful if the limitations of these methods are appreciated. The use of the stable isotope technique, doubly labelled water, enables total daily energy expenditure to be measured accurately in free-living subjects. The factorial method for combining activity logs and data on the energy costs of activities can also provide detailed information on free-living subjects.

2012 ◽  
Vol 109 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Stephen Whybrow ◽  
Patrick Ritz ◽  
Graham W. Horgan ◽  
R. James Stubbs

Objective estimates of activity patterns and energy expenditure (EE) are important for the measurement of energy balance. The Intelligent Device for Energy Expenditure and Activity (IDEEA) can estimate EE from the thirty-five postures and activities it can identify and record. The present study evaluated the IDEEA system's estimation of EE using whole-body indirect calorimetry over 24 h, and in free-living subjects using doubly-labelled water (DLW) over 14 d. EE was calculated from the IDEEA data using calibration values for RMR and EE while sitting and standing, both as estimated by the IDEEA system (IDEEAest) and measured by indirect calorimetry (IDEEAmeas). Subjects were seven females and seven males, mean age 38·1 and 39·7 years, mean BMI 25·2 and 26·2 kg/m2, respectively. The IDEEAest method produced a similar estimate of EE to the calorimeter (10·8 and 10·8 MJ, NS), while the IDEEAmeas method underestimated EE (9·9 MJ, P < 0·001). After removing data from static cycling, which the IDEEA was unable to identify as an activity, both the IDEEAest and IDEEAmeas methods overestimated EE compared to the calorimeter (9·9 MJ, P < 0·001; 9·1 MJ, P < 0·05 and 8·6 MJ, respectively). Similarly, the IDEEA system overestimated EE compared to DLW over 14 d; 12·7 MJ/d (P < 0·01), 11·5 MJ/d (P < 0·01) and 9·5 MJ/d for the IDEEAest, IDEEAmeas and DLW, respectively. The IDEEA system overestimated EE both in the controlled laboratory and free-living environments. Using measured EE values for RMR, sitting and standing reduced, but did not eliminate, the error in estimated EE.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5775 ◽  
Author(s):  
Yanxiang Yang ◽  
Moritz Schumann ◽  
Shenglong Le ◽  
Shulin Cheng

Background Objective assessments of sedentary behavior and physical activity (PA) by using accelerometer-based wearable devices are ever expanding, given their importance in the global context of health maintenance. This study aimed to determine the reliability and validity of a new accelerometer-based analyzer (Fibion) for detecting different PAs and estimating energy expenditure (EE) during a simulated free-living day. Methods The study consisted of two parts: a reliability (n = 18) and a validity (n = 19) test. Reliability was assessed by a 45 min protocol of repeated sitting, standing, and walking (i.e., 3 × 15 min, repeated twice), using both Fibion and ActiGraph. Validity was assessed by a 12 h continuous sequence tasks of different types (sitting, standing, walking, and cycling) and intensities (light [LPA], moderate [MPA], and vigorous [VPA]) of PA. Two Fibion devices were worn on the thigh (FT) and in the pocket (FP), respectively and were compared with criteria measures, such as direct observation (criterion 1) and oxygen consumption by a portable gas analyzer, K4b2 (criterion 2). Results FT (intra-class correlation coefficients (ICCs): 0.687–0.806) provided similar reliability as the Actigraph (ICCs: 0.661–0.806) for EE estimation. However, the measurement error (ME) of FT compared to the actual time records indicated an underestimation of duration by 5.1 ± 1.2%, 3.8 ± 0.3% and 14.9 ± 2.6% during sitting, walking, and standing, respectively. During the validity test, FT but not FP showed a moderate agreement but lager variance with the criteria (1 and 2) in assessing duration of sitting, long sitting, LPA, MPA, and VPA (p > 0.05, ICCs: 0.071–0.537), as well as for EE estimation of standing, LPA, MPA, and VPA (p > 0.05, ICCs: 0.673–0.894). Conclusions FT provided similar reliability to that of the Actigraph. However, low correlations between subsequent measurements of both devices indicated large random MEs, which were somewhat diminished during the simulated 12 h real-life test. Furthermore, FT may accurately determine the types, intensities of PA and EE during prolonged periods with substantial changes in postures, indicating that the location of the accelerometer is essential. Further study with a large cohort is needed to confirm the usability of Fibion, especially for detecting the low-intensity PAs.


Rangifer ◽  
2000 ◽  
Vol 20 (2-3) ◽  
pp. 211 ◽  
Author(s):  
Geir Gotaas ◽  
Eric Milne ◽  
Paul Haggarty ◽  
Nicholas J.C. Tyler

The doubly labelled water (DLW) method was used to measure total energy expenditure (TEE) in three male reindeer (Rangifer tarandus tarandus) aged 22 months in winter (February) while the animals were living unrestricted at natural mountain pasture in northern Norway (69&deg;20'N). The concentrations of 2H and l8O were measured in water extracted from samples of faeces collecred from the animals 0.4 and 11.2 days after injection of the isotopes. Calculated rates of water flux and CO2-production were adjusted to compensate for estimated losses of 2H in faecal solids and in methane produced by microbial fermentation of forage in the rumen. The mean specific TEE in the three animals was 3.057 W.kg-1 (range 2.436 - 3.728 W.kg1). This value is 64% higher than TEE measured by the DLW method in four captive, non-pregnant adult female reindeer in winter and probably mainly reflects higher levels of locomotor activity in the free-living animals. Previous estimates of TEE in free-living Rangifer in winter based on factorial models range from 3.038 W.kg-1 in female woodland caribou (R. t. caribou) to 1.813 W.kg-1 in female Svalbard reindeer (R. t. platyrhynchus). Thus, it seems that existing factorial models are unlikely to overestimate TEE in reindeer/caribou: they may, instead, be unduly conservative. While the present study serves as a general validation of the factorial approach, we suggest that the route to progress in the understanding of field energetics in wild ungulates is via application of the DLW method.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Suzanne M. de Graauw ◽  
Janke F. de Groot ◽  
Marco van Brussel ◽  
Marjolein F. Streur ◽  
Tim Takken

Purpose. To critically review the validity of accelerometry-based prediction models to estimate activity energy expenditure (AEE) in children and adolescents.Methods. The CINAHL, EMBASE, PsycINFO, and PubMed/MEDLINE databases were searched. Inclusion criteria were development or validation of an accelerometer-based prediction model for the estimation of AEE in healthy children or adolescents (6–18 years), criterion measure: indirect calorimetry, or doubly labelled water, and language: Dutch, English or German.Results. Nine studies were included. Median methodological quality was5.5±2.0 IR (out of a maximum 10 points). Prediction models combining heart rate and counts explained 86–91% of the variance in measured AEE. A prediction model based on a triaxial accelerometer explained 90%. Models derived during free-living explained up to 45%.Conclusions. Accelerometry-based prediction models may provide an accurate estimate of AEE in children on a group level. Best results are retrieved when the model combines accelerometer counts with heart rate or when a triaxial accelerometer is used. Future development of AEE prediction models applicable to free-living scenarios is needed.


1997 ◽  
Vol 78 (5) ◽  
pp. 709-722 ◽  
Author(s):  
Beatrice Morio ◽  
Patrick Ritz ◽  
Elisabeth Verdier ◽  
Christophe Montaurier ◽  
Bernard Beaufrere ◽  
...  

The aim of the present study was to validate against the doubly-labelled water (DLW) technique the factorial method and the heart rate (HR) recording method for determining daily energy expenditure (DEE) of elderly people in free-living conditions. The two methods were first calibrated and validated in twelve healthy subjects (six males and six females; 70·1 (sd 2·7) years) from opencircuit whole-body indirect calorimetry measurements during three consecutive days and during 1 d respectively. Mean energy costs of the various usual activities were determined for each subject using the factorial method, and individual relationships were set up between HR and energy expenditure for the HR recording method. In free-living conditions, DEE was determined over the same period of time by the DLW, the factorial and the HR recording methods during 17, 14 and 4 d respectively. Mean free-living DEE values for men estimated using the DLW, the factorial and the HR recording methods were 12·8 (sd 3·1), 12·7 (sd 2·2) and 13·5 (sd 2·7) MJ/d respectively. Mean free-living DEE values for women were 9·6 (sd 0·8), 8·8 (sd 1·2) and 10·2 (sd 1·5) MJ/d respectively. No significant differences were found between the three methods for either sex, using the Bland & Altman (1986) test. Mean differences in DEE of men were -0·9 (sd 11·8) % between the factorial and DLW methods, and +4·7 (sd 16·1) % between the HR recording and DLW methods. Similarly, in women, mean differences were -7·7 (sd 12·7) % between the factorial and DLW methods, and +5·9 (sd 8·8) % between the HR recording and DLW methods. It was concluded that the factorial and the HR recording methods are satisfactory alternatives to the DLW method when considering the mean DEE of a group of subjects. Furthermore, mean energy costs of activities calculated in the present study using the factorial method were shown to be suitable for determining free-living DEE of elderly people when the reference value (i.e. sleeping metabolic rate) is accurately measured.


2017 ◽  
Vol 49 (5S) ◽  
pp. 529
Author(s):  
William E. Kraus ◽  
Megan A. McCrory ◽  
Manjushiri Bhapkar ◽  
Edward P. Weiss ◽  
Corby K. Martin ◽  
...  

2013 ◽  
Vol 2 ◽  
Author(s):  
Marie Löf ◽  
Hanna Henriksson ◽  
Elisabet Forsum

AbstractActivity energy expenditure (AEE) during free-living conditions can be assessed using devices based on different principles. To make proper comparisons of different devices' capacities to assess AEE, they should be evaluated in the same population. Thus, in the present study we evaluated, in the same group of subjects, the ability of three devices to assess AEE in groups and individuals during free-living conditions. In twenty women, AEE was assessed using RT3 (three-axial accelerometry) (AEERT3), Actiheart (a combination of heart rate and accelerometry) (AEEActi) and IDEEA (a multi-accelerometer system) (AEEIDEEA). Reference AEE (AEEref) was assessed using the doubly labelled water method and indirect calorimetry. Average AEEActi was 5760 kJ per 24 h and not significantly different from AEEref (5020 kJ per 24 h). On average, AEERT3 and AEEIDEEA were 2010 and 1750 kJ per 24 h lower than AEEref, respectively (P < 0·001). The limits of agreement (± 2 sd) were 2940 (Actiheart), 1820 (RT3) and 2650 (IDEEA) kJ per 24 h. The variance for AEERT3 was lower than for AEEActi (P = 0·006). The RT3 classified 60 % of the women in the correct activity category while the corresponding value for IDEEA and Actiheart was 30 %. In conclusion, the Actiheart may be useful for groups and the RT3 for individuals while the IDEEA requires further development. The results are likely to be relevant for a large proportion of Western women of reproductive age and demonstrate that the procedure selected to assess physical activity can greatly influence the possibilities to uncover important aspects regarding interactions between physical activity, diet and health.


1989 ◽  
Vol 62 (2) ◽  
pp. 315-329 ◽  
Author(s):  
J. Singh ◽  
A. M. Prentice ◽  
E. Diaz ◽  
W.A. Coward ◽  
J. Ashford ◽  
...  

The doubly-labelled water (2H218O) method was used to measure total energy expenditure (TEE) in ten non-pregnant, non-lactating (NPNL), six pregnant (P) and fourteen lactating (L) women in a rural Gambian community. Measurements were made on free-living subjects at a period of peak energetic stress when high agricultural work loads coincided with a hungry season to induce moderately severe negative energy balance. TEE averaged 10.42 (SD 2.08) MJ/d, equivalent to 1.95 (SD 0.38) times resting metabolic rate (RMR). The energy cost of physical activity plus thermogenesis, derived as TEE – RMR, averaged 4.94 (SD 1.96) MJ/d. Expressed per kg body-weight (103 kJ/kg per d) this component of expenditure was 2.5 times greater than comparative values from inactive, affluent women studied previously (39 kJ/kg per d). Estimated energy intake (EI) in a subset of the women (n 13) was only 4.80 (SD 1.58) MJ/d, yielding an apparent deficit of 6.08 MJ/d between EI and TEE. Weight changes suggested that endogenous fat oxidation accounted for only about 0.85 MJ/d, leaving an unexplained difference of over 5 MJ/d. Critical analysis of possible errors suggests that the new doubly-labelled water method has provided the most reliable estimates and that the estimates of EI were substantially in error. This finding has important consequences for other food intake studies.


Sign in / Sign up

Export Citation Format

Share Document