scholarly journals Deep Crustal Structure of the Capricorn Orogen from Gravity and Seismic Data

2015 ◽  
Vol 2015 (1) ◽  
pp. 1-3
Author(s):  
Abdulrhman H. Alghamdi ◽  
Alan R.A. Aitken ◽  
Michael C. Dentith
2011 ◽  
Vol 54 (6) ◽  
pp. 1022-1032 ◽  
Author(s):  
Chuan-Chuan Lü ◽  
Tian-Yao HAO ◽  
Xue-Lin QIU ◽  
Ming-Hui ZHAO ◽  
Qing-Yu YOU

2015 ◽  
Vol 656 ◽  
pp. 154-174 ◽  
Author(s):  
Y. Biari ◽  
F. Klingelhoefer ◽  
M. Sahabi ◽  
D. Aslanian ◽  
P. Schnurle ◽  
...  

1967 ◽  
Vol 57 (6) ◽  
pp. 1367-1392
Author(s):  
Eduard Berg ◽  
Susumu Kubota ◽  
Jurgen Kienle

Abstract Seismic and gravity observations were carried out in the active volcanic area of Katmai in the summer of 1965. A determination of hypocenters has been aftempted using S and P arrivals at a station located at Kodiak and two stations located in the Monument. However, in most cases, deviations of travel times from the Jeffreys-Bullen tables were rather large. Therefore hypocenters are not well located. A method based on P- and S-wave arrivals yields a Poisson's ratio of 0.3 for the upper part of the mantle under Katmai. This higher value is probably due to the magma formation. The average depth to the Moho from seismic data in the same area is 38 km and 32 km under Kodiak. Using Woollard's relation between Bouguer anomaly and depth to the Moho, a small mountain root under the volcanoes with a depth of 34 km was found dipping gently up to 31 km on the NW side. The active volcanic cones are located along an uplift block. This block is associated with a 35 mgal Bouguer anomaly. The Bouguer anomaly contour map for the Alaska Peninsula is given and an interpretation attempted.


Geology ◽  
1988 ◽  
Vol 16 (6) ◽  
pp. 533 ◽  
Author(s):  
K.M.M. Rohr ◽  
B. Milkereit ◽  
C. J. Yorath

2015 ◽  
Vol 186 (4-5) ◽  
pp. 331-351 ◽  
Author(s):  
Alexandra Afilhado ◽  
Maryline Moulin ◽  
Daniel Aslanian ◽  
Philippe Schnürle ◽  
Frauke Klingelhoefer ◽  
...  

Abstract Geophysical data acquired on the conjugate margins system of the Gulf of Lion and West Sardinia (GLWS) is unique in its ability to address fundamental questions about rifting (i.e. crustal thinning, the nature of the continent-ocean transition zone, the style of rifting and subsequent evolution, and the connection between deep and surface processes). While the Gulf of Lion (GoL) was the site of several deep seismic experiments, which occurred before the SARDINIA Experiment (ESP and ECORS Experiments in 1981 and 1988 respectively), the crustal structure of the West Sardinia margin remains unknown. This paper describes the first modeling of wide-angle and near-vertical reflection multi-channel seismic (MCS) profiles crossing the West Sardinia margin, in the Mediterranean Sea. The profiles were acquired, together with the exact conjugate of the profiles crossing the GoL, during the SARDINIA experiment in December 2006 with the French R/V L’Atalante. Forward wide-angle modeling of both data sets (wide-angle and multi-channel seismic) confirms that the margin is characterized by three distinct domains following the onshore unthinned, 26 km-thick continental crust : Domain V, where the crust thins from ~26 to 6 km in a width of about 75 km; Domain IV where the basement is characterized by high velocity gradients and lower crustal seismic velocities from 6.8 to 7.25 km/s, which are atypical for either crustal or upper mantle material, and Domain III composed of “atypical” oceanic crust. The structure observed on the West Sardinian margin presents a distribution of seismic velocities that is symmetrical with those observed on the Gulf of Lion’s side, except for the dimension of each domain and with respect to the initiation of seafloor spreading. This result does not support the hypothesis of simple shear mechanism operating along a lithospheric detachment during the formation of the Liguro-Provencal basin.


Sign in / Sign up

Export Citation Format

Share Document