Effects of altitude on plant-species diversity and productivity in an alpine meadow, Qinghai - Tibetan plateau

2007 ◽  
Vol 55 (2) ◽  
pp. 110 ◽  
Author(s):  
Chang Ting Wang ◽  
Rui Jun Long ◽  
Qi Ji Wang ◽  
Lu Ming Ding ◽  
Mei Ping Wang

During the growing seasons of 2002 and 2003, biomass productivity and diversity were examined along an altitudinal transect on the south-western slope of Beishan Mountain, Maqin County (33°43′–35°16′N, 98°48′–100°55′E), Qinghai–Tibetan Plateau. Six altitudes were selected, between 3840 and 4435 m. Soil organic matter, soil available N and P and environmental factors significantly affected plant-species diversity and productivity of the alpine meadows. Aboveground biomass declined significantly with increasing altitude (P < 0.05) and it was positively and linearly related to late summer soil-surface temperature. Belowground biomass (0–10-cm depth) was significantly greater at the lowest and highest altitudes than at intermediate locations, associated with water and nutrient availabilities. At each site, the maximum belowground biomass values occurred at the beginning and the end of the growing seasons (P < 0.05). Soil organic matter content, and available N and P were negatively and closely related to plant diversity (species richness, Shannon–Wiener diversity index, and Pielou evenness index).


2018 ◽  
Vol 12 (1) ◽  
pp. 49-59
Author(s):  
Ulyan Khalif

Landuse change are suspected to be one responsible to soil fertility decline on Resapombo, Doko, Blitar. Efforts done by local farmers to deal with these problems are plantation of P. falcataria trough a reforestation program around 2011-2012. The benefits of the program are still need to be assessed so that this research was done (1) to compare the soil quality between P. falcataria-planted field and no P.falcataria field by the parameters of soil organic matter content and available N, (2) to study the relationship between organic matter input and soil organic matter content and available N, and (3) to identify factors affecting N availability post-P. falcatariaplantation. This research used randomized block design with 5 treatments (annual crop field, 3 and 6 years P. falcaria plantation field, agroforestry field with P. falcataria + coffee + talas plantation, and ex-P. falcataria-planted field. Soil were sampled compositely by 3 replication from 0-20 cm depth. Litter were sampled from a 0.5m2 sub-plot of each treatment. Results showed that P. falcataria plantations enhance soil fertility indicated by increased soil organic matter input to 10.6 times (monoculture) and 17.6 times (agroforestry) control, increased soil organic matter content by 1.5 times (monoculture) and 2.3 times(agroforestry) control, increased total N of 1.6 times (monoculture) and 2.4 times (agroforestry) control, increased ammonium by 1.7 times (monoculture) and 3.2 times (agroforestry) control, and increased nitrate by 2.4 times (monoculture) and 3.9 times(agroforestry) control.The increased soil N content of P. falcataria-planted field were caused by higher soil organic inputs compared to those with no P. falcataria plantation. Nitrogen availability affected by soil texture but have no relationship with soil pH. However, agroforestry fields showed higher pH, organic C, total N, and available N than monoculture P. falcataria fields. Measured soil chemical properties showed no significant change by the increase of P. falcataria age, moreover, they declined down towards control on ex-P. falcatariaplantation. This indicates that reforestation would only give a temporary soil quality enhancement.





2008 ◽  
Vol 5 (5) ◽  
pp. 4107-4127 ◽  
Author(s):  
M.-T. Sebastià ◽  
E. Marks ◽  
R. M. Poch

Abstract. In western Africa, soil organic matter is a source of fertility for food provision and a tool for climate mitigation. In the Savannah region, strong soil degradation linked to an increase in population threatens organic matter conservation and agricultural yield. Soil degradation is also expected to impact biodiversity and, with it, increase the vulnerability of ecosystem goods and services, including the storage of soil organic carbon. Studies of land use, plant species composition and soil fertility were conducted for a conservation project at a demonstration farm in Northern Togo (West Africa), host to various management regimes. Results showed a low organic matter content of the surface soil horizons, often around 0.5%. The highest values were found in a sacred forest within the farm (2.2%). Among crops, rice had the highest soil organic matter, around 1%. In a survey of grasslands, pastures showed the highest organic matter content, with vegetation composition differing from grazed fallows and abandoned grasslands. Plant species richness showed a positive relationship with soil organic matter (R2adj=41.2%), but only by the end of the wet season, when species richness was also highest. Sampling date had a strong effect on vegetation composition. Results showed a strong influence of human activity on soil formation and distribution, and also on plant diversity. The soil characteristics found under the permanent forest suggest a high potential of the soils of the region for improvement of both agricultural yields and as a potential carbon sink relevant to global change policies.



2018 ◽  
Vol 12 (1) ◽  
pp. 49-59
Author(s):  
Ulyan Khalif

Landuse change are suspected to be one responsible to soil fertility decline on Resapombo, Doko, Blitar. Efforts done by local farmers to deal with these problems are plantation of P. falcataria trough a reforestation program around 2011-2012. The benefits of the program are still need to be assessed so that this research was done (1) to compare the soil quality between P. falcataria-planted field and no P.falcataria field by the parameters of soil organic matter content and available N, (2) to study the relationship between organic matter input and soil organic matter content and available N, and (3) to identify factors affecting N availability post-P. falcatariaplantation. This research used randomized block design with 5 treatments (annual crop field, 3 and 6 years P. falcaria plantation field, agroforestry field with P. falcataria + coffee + talas plantation, and ex-P. falcataria-planted field. Soil were sampled compositely by 3 replication from 0-20 cm depth. Litter were sampled from a 0.5m2 sub-plot of each treatment. Results showed that P. falcataria plantations enhance soil fertility indicated by increased soil organic matter input to 10.6 times (monoculture) and 17.6 times (agroforestry) control, increased soil organic matter content by 1.5 times (monoculture) and 2.3 times(agroforestry) control, increased total N of 1.6 times (monoculture) and 2.4 times (agroforestry) control, increased ammonium by 1.7 times (monoculture) and 3.2 times (agroforestry) control, and increased nitrate by 2.4 times (monoculture) and 3.9 times(agroforestry) control.The increased soil N content of P. falcataria-planted field were caused by higher soil organic inputs compared to those with no P. falcataria plantation. Nitrogen availability affected by soil texture but have no relationship with soil pH. However, agroforestry fields showed higher pH, organic C, total N, and available N than monoculture P. falcataria fields. Measured soil chemical properties showed no significant change by the increase of P. falcataria age, moreover, they declined down towards control on ex-P. falcatariaplantation. This indicates that reforestation would only give a temporary soil quality enhancement.





2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document